24. DaskaHCKa MaTeMaTUYKa OJUMIIN]ana

Ponoc, I'puka — 28. ampmsa 2007

. ¥ xomBekcuom uerBopoyriy ABCD Bawxu AB = BC = CD, mujaro-
wase AC' u BD cy paszauuure nyskuse u cexy ce y tauku F. Ilokazatu
na je AE = DE ako u camo ako je ZBAD+/ADC = 120°. (Aabanuja)

. Hahwu cBe ¢yurumje f : R — R rakBe nma 3a cBe peasne Opojese x,y
BasKU

(@) +y) = f(f(2) —y) +4f ()y. (Byeapcra)

. Hahu cBe mpupomae GpojeBe n 3a Koje mOCTOju mepMmyTaluja o Opo-
jea 1,2,...,n TakBa ma je 6poj

\/a(l)+\/a(2)+\/~--+\/m

panroHaJsaH. (Cpbuja)

. Har je meo 6poj n > 3. Hera cy C1,C2 u C3 rpaHune Tpu KOHBEKCHA
N-TOyrJla y PABHU TAKBa Ha je MPECEK CBaKe OBE Ol HUX KOHAUAH
cryn tavaka. Hahu majsehu moryhu 6poj tavaka ckyna C; NCy NCs.

(Typcra)
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24" BALKAN MATHEMATICAL
OLYMPIAD

Rhodes, Hellas, 28 April 2007

Problem 1.
Let ABCD be a convex quadrilateral with AB =BC =CD, AC = BD and let

E be the intersection point of its diagonals. Prove that AE = DE if and only
if Z/BAD+ ZADC =120°.

Problem 2.
Find all functions f :IR = R such that

f(f(x)+y)=f(f(x)-y)+4f(x)y, forany x,yeR.

Problem 3.
Find all positive integers n such that there is a permutation ¢ of the set

{1,2,...,n} for which \/0'(1) + \/0'(2) +4/-++/o(n) is a rational number.

Note: A permutation of the set {1,2,...,n} is a one-to-one function of this set
to itself.

Problem 4.
For a given positive integer n > 2, let C, C,, C, be the boundaries of three

convex n-gons in the plane such that C, nC,, C, nC,, C, nC, are finite.

Find the maximum number of points of the set C, "C, NC,.

Time allowed 4 hours and 30 minutes
Each problem is worth 10 points.



24'" BALKAN MATHEMATICAL OLYMPIAD
Rhodes, Hellas (April 28, 2007)

Problem 1.

et ABCD be a convex quadrilateral with AB = BC = CD, AC # BD and let
£} be the intersection point of its diagonals. Prove that AF = DF if and only if
/BAD + /ADC = 120°.

Solution. Let us first denote /BAC = /BCA =, /CBD = /CDB = (.

Part I : Assume AF = DFE.

By AEBC we have JAEB = /DEC = oo+ 3, thus in AABE we have JABE =
180° — (200 + 3), and in ACED we have Z/DCE = 180° — (o + 28). Then by the

law of sines in these two triangles we get

AE AB cD DE

sin(2a+3)  sin(fa+8)  sin(a+ B sin(a+28)

So sin(2a + 8) = sin(a + 28) with 0Y < 20 + 8,0 + 28 < 180", So ecither
200+ B=a 28 o0r 20+ B+ a + 23 = 180",

The relation 2043 = a+28 gives o« = &, which in turn implies /BAD = /CDA,
and then ABAD = ACDA, from which AC = BD, a contradiction.

The relation 2a+8-+a+28 = 180° implies o+ 3 = 60", Then /BAD+/ADC —
a+ /EAD+ 8+ /EDA =a+ 8+ ZAEB = 2(a + 8) = 120°.

Part I : Assume /BAD + /ADC = 120,

Let S be the intersection point of the lines AB and DC.

As in part I, we have FAEB = a+f. But also FAEB = /EAD+ /FEDA. Thus
2/AEB =a+ 8+ /FAD + /EDA = /BAD + ZADC = 120°, i.e ZAEB = 60V,
But S is also 60°. So SBEC is cyclic. Thus Z/ZBSE = /BCA = o = £ZSAC. So
FA=FES. Similarly ED = ES, and the desired result follows. [ |
Remark. We can avoid the use of trigonometry in part I, as follows: The triangles
BAFE and C'DE have two pairs of equal sides and their angles AEB, CEC opposite
to the sides of one of these pairs also equal. By a well known theorem on the
congruence of two triangles, we know then that the angles ABE and DCA opposite
to the sides of the other pair are either equal or they add up to 1807, ete.

S

G+B G+B
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Problem 2.
Find all functions f : R — R such that

f(f(x) +y) = f(f(x) —y) +4f(z)y for any z,y € R.

Solution. It is clear that the function f = 0 satisfies the given condition.

Assume that f # 0. Choose zg such that f(zg) # 0 and set y = 4]‘% ] for any
Zo
y. Then plugging in to the given relation xq for = and ¥y for y we get
y = f(f(xo) +y) — f(f(x0) = V). (1)

Yy —

For any y1, 32, plugging in to (1) TyQ for y, we get

—_— P

Yi— Y2 Y1 — Y2 Y1 — Y2
5 = f(f(x0) + 5 )—f(f(icO)—T)-

—_~—

In other words, for any yi, 3, there exist z1(y1,y2) = f(zo) + L52, x5(y1,12) =

2
f(xo) + £5% such that Nnv f(z1) — f(x2), i.e. such that

2f(x1) —y1 = 2f(x2) — v (2)

On the other hand, replacing y by f(z) — y in the given condition gives
FRf(x) —y) = fly) +4f(2)(f(2) —y), e

fly) —y* = f2f(x) —y) — 2(f(2) —y)* (3)
Now if for any two y1, y2, we plug in to (3), x1(y1,y2) and z2(y1, y2) respectively,
we get
fln) —yi = F2f(x1) —y1) — 2(f(21) —n)°
and

) =3 = F2f(x2) —y2) — (2(f(22) — y2)?

Then by (2) we get f(y1) —y? = f(y2) —y3. Since this happens for any two ¥, ¥,
we conclude that f(z) — 2% = constant for all z, thus f(z) = 22 + ¢,c € R. It is
easy to check that such a function satisfies the condition of the problem. |
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Problem 3. Find all positive integers n such that there is a permutation ¢ of the

set {1,2,...,n}, for which \/0(1) + \/0(2) +4/... + \/o(n) is a rational number.

Note: A permutation of the set {1,2,...,n} is a one-to-one function of this set
to itself.

Solution. For some n € N, let \/0(1) + \/0(2) +4/... +/o(n) =r; € Q. Squar-
ing both sides of the equation we get that \/0(2) + \/0(3) +4/... +/o(n) is also

rational. Using the same reasoning recursively, we get that for every k € {1,...,n},

\/a(k:) + \/J(k +1)+4/... + y/o(n) is rational as well. Knowing that the square

root of a positive integer is either integer or irrational, we have that y/o(n) is in-

teger. Similarly, we get that \/a(k) + \/U(k +1)+4/... + /o(n), for every k €
{1,...,n}, is integer. Note that for k = 1 we get , € N.

We define ay as a, = \/n+\/n+\/...—|—\/ﬁ, for all £ > 1. It is easy to

k
prove by induction that ap < /n + 1, for every k& > 1. Therefore, we have

\/ \/ m<an<\/_+1 implying 71 < /n + 1.

Let ¢ be the positive integer that satisfies 2 < n < (¢/+1)%. Forsomei, 1 < i < n,
we have o (i) = (2. We distinguish two cases:

First case: i # n.

Themvvehave€<\/€2 \/ i+1) .o ()<\/_+1<€+2 implying



\/ﬁ2 + \/a(z' +1)+ /... + y/o(n) = £+ 1. But then it follows that

2€+1—\/a(i—l—l)—i—\/...—l—\/a(n)<\/ﬁ+1<€—|—2,

giving ¢ < 1. A contradiction.

Second case: 1 = n.

For ¢ > 1, /% — 1 belongs to the set {o(1),...,0(n — 1)}. Let j < n be such that
o(j) = ¢? — 1. Similarly to the first case, we have

€<\/62—1+\/a(j+1)+\/...+\/€_2<\/ﬁ+1<€+2,

implying \/62—1+\/0(j—|—1)+\/...—|—\/€_2:€—|—1,and

2£+2:\/a(j+1)+\/...+\/£_2<\/ﬁ+1<£+2,

a contradiction.
If ¢ =1, then n € {1,2,3}. Checking through all the possibilities, it is easy to see
that for n = 1 and n = 3 there exist permutations that satisfy the initial condition.

Namely, for n = 1 we have v/1 = 1, and for n = 3, we have \/2+ V3 + V1 = 2.
For n = 2 there is no such permutation.
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Problem 4. For a given positive integer n > 2, let C', (5, C'3 be the boundaries of
three convex n-gons in the plane such that the sets C; N Cy, Co N Cs, C3 N Cy are
finite. Find the maximum number of points of the set C; N Cy N Cs.

Solution 1: Let us first observe that, if a line intersects a convex n—gon at finitely
many points, then the number of such points is at most 2. Therefore any two of the
n—gons may intersect in at most 2n points. Choose two of the n—gons, C, Cs, and
say that their intersection points are pq, ps, ..., pr. Thus & < 2n. Say that the union
of the set of vertices of Cy and Cs is {q1, ¢, - - ., g2, }- We note that it is possible to
have ¢; = ¢; for some i # j.

We will define a one-to-one function f from {pi,pa,...,pe} to {q1,92,--.,Gon}
as follows. First of all, orient all n—gons in the clockwise direction. Thus, if one
traverses an n—gon according to this orientation, the interior is on the right and
the exterior is on the left. For every p;, there exist precisely two line segments (of
non-zero length) which are subsets of Cy or Cy, say [g;,p;] on C; and [gx, p;] on Cs,
such that one can approach to p; via these line segments in the clockwise direction.
Suppose, that the two vectors p; — ¢; and p; — qi, in this order, form a right handed
coordinate system. Then none of the points on [¢;, p;] can be on or in the interior
of (Y, since for any point ¢ on or in the interior of Cs, the vectors p; — ¢ and p; — qx
are either positive multiples of each other, or form a left handed coordinate system.
In this case we set f(p;) = ¢;. Otherwise we set f(p;) = gr. In both cases, the
argument above shows that there are no other intersection points between f(p;) and
pi, in the clockwise direction. Let us now show that fis 1 — 1. If f(p;) = f(p) = ¢
and ¢ say (without loss of generality) belong to C1, then the first intersection point
encountered when one starts from ¢ and traverses C'; in the clockwise direction has
to be both p; and p;, hence p; = p;.

Now let us estimate the number of p;’s that can be contained by the third polygon
C5. Each edge of ('3 contains exactly 0, 1 or 2 of the p;’s. Suppose that a given edge
of C3 contains 2 of the p;’s, say p; and py. Since C; and Cs are convex and their
intersection with Cj is generic, they should have vertices between (in the clockwise
sense) p; and py (with this order), and outside C3. We claim that at least one of
these vertices is not in the set f(C1NCyNCs). Let ¢; € C1 and ¢o € Cy respectively
be between (in the clockwise sense) p; and p, (with this order). If ¢; is on or in the
interior of Cy (or ¢ is on or in the interior of C1), then ¢; (or ¢2) is not in the image
of f, since recall that f(p) for any p € C; N Cy (thus for any p € C; N Cy N Cy)
is a point of one of C7,C5 not on or in the interior of the other. So the claim is
established in this case. The remaining case is to assume that none of the vertices
of any of Cy, Cy that lie outside C3 (and between (in the clockwise sense) p; and py

1



(with this order)) also lies in the interior of the other of C, Cs. In this case clearly
the polygons C7 and Cy must meet at some point between (in the clockwise sense)
p1 and py (with this order). Say ps is the closest to p; such point. Then clearly
f(ps) is a vertex of one of Cy,Cy between (in the clockwise sense) p; and py (with
this order). These parts of C7,Cy though, lie outside Cj; the interior of C3 lie on
the other side of the line p;ps. Thus f(ps) is not in f(Cy; N CyNC3) and the claim is
established in all cases. For the side a of C5 containing py, ps let us call g(a) a vertex
as the one in the claim we just proved. It is easy to see that for distinct sides a, b
of ('3 that contain two of the p’s, the points q,, g, are distinct. Indeed, let a contain
p1, p2 and b contain ps, p, among the p’s. If one of q,, g, belongs to one of C7, C5 and
the other does not belong to it, we are okay. If both ¢,, ¢, belong to say C, then in
a clockwise tour around (' starting at p;, we meet py, p2, ps, p4 in this order. If not,
say the order is p1, p3, p2, ps. Then the segments ppo, p3, ps intersect at an interior
point, since (] is a convex polygon. But then the sides a,b of C5 have a common
interior point, a contradiction. So the correct order is pi, p2, p3, ps. But we know
that adding ¢(a), ¢(b) in this tour the correct order is py, q(a), p2, ps, q(b), ps. Thus
q(a), q(b) are distinct as claimed.

Now if = of the edges of C3 contain 1 of the p;’s and y of them contain 2 of the
pi’s, then = + y < number of sides of (3, i.e. © 4+ y < n. The number of points
in C;NCyNCsis o+ 2y. Since f is injective, x + 2y is also the number of ¢’s in
f(C1 N Cyn Cy). Also, by the argument in the previous paragraph, we see that for
every distinct edge of C5 containing 2 points we can assign a corresponding distinct
q; outside the image of f(C; N Cy N C3). Therefore z is less or equal to the number
of ¢’s that do not belong in f(C; N CyNC5). So (z + 2y) + y is at most as much as
the number of ¢’s. L.e. x4+ 3y < 2n. Adding this with z +y < n and dividing by 2,
and also taking into account that x + 2y is an integer

3n
r+2y < L;J

Let us now show that this is the best upper bound for every n > 3. One way (among
many) to construct an example is as follows: Construct two regular n—gons C7, Cy
with the same center, such that their intersection points form a regular 2n—gon. Call
the vertices py, pa, ..., pan in a cyclic order. Let the circumcircle of this 2n—gon be
C. Then let the n—gon bounded by the lines p1ps, psp7, popi1, - - - (including pog1p1
in case n is an odd n = 2k + 1) together with the tangent lines to C at py, ps, p12, - - -
be Cj. It can easily be checked that |Cy N Cy N Cs) = [22]. [ |

Solution 2: Let A and B be two consequtive points of C7 N Cy N C3 observed
in the clockwise direction from a point in the interior of all three n-gons. Let’s
look for each C; its section in the clockwise direction between A and B exluding
these points. If some two of these sections both do not contain any vertices of their
corresponding n-gons, then the segment AB belongs to both n-gons, a contradiction.



Thus at least two of these segments have at least one vertex each, and moreoverthey
do not contain the segment. Trivially, two distinct such vertices exist. Since there
exist |C; N Cy N C3| many consequtive points points A and B of C; N Cy N C3, there
should exist at least 2|C; N Cy N C3| distinct vertices of the three n-gons. Thus
2|CiNCyN G| < 3nie. [CyNCoNCs < [2] since (|Cy N Co N Cs is an integer
as well).

Actually we can achieve this upper bound by the example given in the Solution
1.
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