USA and International Mathematical Olympiads 2003

(c) 2004 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2004????? ISBN 0-88385-???-?

Printed in the United States of America
Current Printing (last digit):
10987654321

USA and International Mathematical Olympiads 2003

Edited by
Titu Andreescu and

Zuming Feng

Published and distributed by
The Mathematical Association of America

Council on Publications
Roger Nelsen, Chair
Roger Nelsen Editor
Irl Bivens Clayton Dodge
Richard Gibbs George Gilbert
Gerald Heuer Elgin Johnston
Kiran Kedlaya Loren Larson
Margaret Robinson Mark Saul

MAA PROBLEM BOOKS SERIES

Problem Books is a series of the Mathematical Association of America consisting of collections of problems and solutions from annual mathematical competitions; compilations of problems (including unsolved problems) specific to particular branches of mathematics; books on the art and practice of problem solving, etc.

A Friendly Mathematics Competition: 35 Years of Teamwork in Indiana, edited by Rick Gillman
The Inquisitive Problem Solver, Paul Vaderlind, Richard K. Guy, and Loren C. Larson
International Mathematical Olympiads 1986-1999, Marcin E. Kuczma
Mathematical Olympiads 1998-1999: Problems and Solutions From Around the World, edited by Titu Andreescu and Zuming Feng
Mathematical Olympiads 1999-2000: Problems and Solutions From Around the World, edited by Titu Andreescu and Zuming Feng
Mathematical Olympiads 2000-2001: Problems and Solutions From Around the World, edited by Titu Andreescu, Zuming Feng, and George Lee, Jr.
The William Lowell Putnam Mathematical Competition Problems and Solutions: 1938-1964, A. M. Gleason, R. E. Greenwood, L. M. Kelly
The William Lowell Putnam Mathematical Competition Problems and Solutions: 1965-1984, Gerald L. Alexanderson, Leonard F. Klosinski, and Loren C. Larson
The William Lowell Putnam Mathematical Competition 1985-2000: Problems, Solutions, and Commentary, Kiran S. Kedlaya, Bjorn Poonen, Ravi Vakil
USA and International Mathematical Olympiads 2000, edited by Titu Andreescu and Zuming Feng
USA and International Mathematical Olympiads 2001, edited by Titu Andreescu and Zuming Feng
USA and International Mathematical Olympiads 2002, edited by Titu Andreescu and Zuming Feng
USA and International Mathematical Olympiads 2003, edited by Titu Andreescu and Zuming Feng

MAA Service Center
P. O. Box 91112

Washington, DC 20090-1112
1-800-331-1622 fax: 1-301-206-9789
www.maa.org

Contents

Preface ix
Acknowledgments xi
Abbreviations and Notations xiii
Introduction xV
1 The Problems 1
1 USAMO 1
2 Team Selection Test 3
3 IMO 5
2 Hints 7
1 USAMO 7
2 Team Selection Test 8
3 IMO 9
3 Formal Solutions 11
1 USAMO 11
2 Team Selection Test 32
3 IMO 46
4 Problem Credits 61
5 Glossary 63
6 Further Reading 69
7 Appendix 75
12002 Olympiad Results 75
2002 Olympiad Results 77
32001 Olympiad Results 79
42000 Olympiad Results 80
51999 Olympiad Results 82
6 1999-2003 Cumulative IMO Results 83
About the Authors 85

Preface

This book is intended to help students preparing to participate in the USA Mathematical Olympiad (USAMO) in the hope of representing the United States at the International Mathematical Olympiad (IMO). The USAMO is the third stage of the selection process leading to participation in the IMO. The preceding examinations are the AMC 10 or the AMC 12 (which replaced the American High School Mathematics Examination) and the American Invitational Mathematics Examination (AIME). Participation in the AIME and the USAMO is by invitation only, based on performance in the preceding exams of the sequence.

The top 12 USAMO students are invited to attend the Mathematical Olympiad Summer Program (MOSP) regardless of their grade in school. Additional MOSP invitations are extended to the most promising nongraduating USAMO students, as potential IMO participants in future years. During the first days of MOSP, IMO-type exams are given to the top 12 USAMO students with the goal of identifying the six members of the USA IMO Team. The Team Selection Test (TST) simulates an actual IMO, consisting of six problems to be solved over two $41 / 2$ hour sessions. The 12 equally weighted problems (six on the USAMO and six on the TST) determine the USA Team.

The Mathematical Olympiad booklets have been published since 1976. Copies for each year through 1999 can be ordered from the Mathematical Association of American (MAA) American Mathematics Competitions (AMC). This publication, Mathematical Olympiads 2000, Mathematical Olympiads 2001, and Mathematical Olympiads 2002 are published by the MAA. In addition, various other publications are useful in preparing for the AMC-AIME-USAMO-IMO sequence (see Chapter 6, Further Reading).

For more information about the AMC examinations, or to order Mathematical Olympiad booklets from previous years, please write to

Steven Dunbar, MAA Director for K-12 Programs
American Mathematics Competitions
University of Nebraska-Lincoln
1740 Vine Street
Lincoln, NE 68588-0658,
or visit the AMC web site at www.unl.edu/amc.

Acknowledgments

Thanks to Reid Barton, Gregory Galperin, Razvan Gelca, Gerald Heuer, Kiran Kedlaya, Bjorn Poonen, Cecil Rousseau, Alex Saltman, and Zoran Sunik for contributing problems to this year's USAMO packet. Special thanks to Reid, Kiran, Bjorn, and Richard Stong for their additional solutions and comments made in their review of the packet. Thanks to Kiran and Richard for their further comments and solutions from grading Problems 3 and 6 on the USAMO. Thanks to Charles Chen, Po-Ru Loh and Tony Zhang who proofread this book. Thanks to Anders Kaseorg, Po-Ru, Tiankai Liu, and Matthew Tang who presented insightful solutions. And, also, thanks to Ian Le, Ricky Liu, and Melanie Wood who took the TST in advance to test the quality of the exam.

Abbreviations and Notations

Abbreviations	
IMO	International Mathematical Olympiad
USAMO	United States of America Mathematical Olympiad
MOSP	Mathematical Olympiad Summer Program
Notation for Numerical Sets and Fields	
\mathbb{Z}	the set of integers
\mathbb{Z}_{n}	the set of integers modulo n
Notations for Sets, Logic, and Geometry	
\Longleftrightarrow	if and only if
\Longrightarrow	implies
$\|A\|$	the number of elements in set A
$A \subset B$	A is a proper subset of B
$A \subseteq B$	A is a subset of B
$A \backslash B$	A without B (the complement of A with respect to B)
$A \cap B$	the intersection of sets A and B
$A \cup B$	the union of sets A and B
$a \in A$	the element a belongs to the set A
$A B$	the length of segment $A B$
$\widehat{A B}$	the $\operatorname{arc} A B$
$\overrightarrow{A B}$	the vector $A B$

Introduction

Olympiad-style exams consist of several challenging essay-type problems. Correct and complete solutions often require deep analysis and careful argument. Olympiad questions can seem impenetrable to the novice, yet most can be solved by using elementary high school mathematics, cleverly applied.

Here is some advice for students who attempt the problems that follow:

- Take your time! Very few contestants can solve all of the given problems within the time limit. Ignore the time limit if you wish.
- Try the "easier" questions first (problems 1 and 4 on each exam).
- Olympiad problems don't "crack" immediately. Be patient. Try different approaches. Experiment with simple cases. In some cases, working backward from the desired result is helpful.
- If you get stumped, glance at the Hints section. Sometimes a problem requires an unusual idea or an exotic technique that might be explained in this section.
- Even if you can solve a problem, read the hints and solutions. They may contain some ideas that did not occur in your solution, and may discuss strategic and tactical approaches that can be used elsewhere.
- The formal solutions are models of elegant presentation that you should emulate, but they often obscure the torturous process of investigation, false starts, inspiration and attention to detail that led to them. When you read the formal solutions, try to reconstruct the thinking that went into them. Ask yourself "What were the key ideas?" "How can I apply these ideas further?"
- Many of the problems are presented together with a collection of remarkable solutions developed by the examination committees, con-
testants, and experts, during or after the contests. For each problem with multiple solutions, some common crucial results are presented at the beginning of these solutions. You are encouraged to either try to prove those results on your own or to independently complete the solution to the problem based on these given results.
- Go back to the original problem later and see if you can solve it in a different way.
- All terms in boldface are defined in the Glossary. Use the glossary and the reading list to further your mathematical education.
- Meaningful problem solving takes practice. Don't get discouraged if you have trouble at first. For additional practice, use prior years' exams or the books on the reading list.

1

The Problems

I USAMO

32nd United States of America Mathematical Olympiad

Day I 12:30 PM - 5 PM EDT

April 29, 2003

1. Prove that for every positive integer n there exists an n-digit number divisible by 5^{n} all of whose digits are odd.
2. A convex polygon \mathcal{P} in the plane is dissected into smaller convex polygons by drawing all of its diagonals. The lengths of all sides and all diagonals of the polygon \mathcal{P} are rational numbers. Prove that the lengths of all sides of all polygons in the dissection are also rational numbers.
3. Let $n \neq 0$. For every sequence of integers

$$
a=a_{0}, a_{1}, a_{2}, \ldots, a_{n}
$$

satisfying $0 \leq a_{i} \leq i$, for $i=0, \ldots, n$, define another sequence

$$
t(a)=t(a)_{0}, t(a)_{1}, t(a)_{2}, \ldots, t(a)_{n}
$$

by setting $t(a)_{i}$ to be the number of terms in the sequence a that precede the term a_{i} and are different from a_{i}. Show that, starting from any sequence a as above, fewer than n applications of the transformation t lead to a sequence b such that $t(b)=b$.

32nd United States of America Mathematical Olympiad

Day II 12:30 PM - 5:00 PM EDT

April 30, 2003
4. Let $A B C$ be a triangle. A circle passing through A and B intersects segments $A C$ and $B C$ at D and E, respectively. Rays $B A$ and $E D$ intersect at F while lines $B D$ and $C F$ intersect at M. Prove that $M F=M C$ if and only if $M B \cdot M D=M C^{2}$.
5. Let a, b, c be positive real numbers. Prove that

$$
\frac{(2 a+b+c)^{2}}{2 a^{2}+(b+c)^{2}}+\frac{(2 b+c+a)^{2}}{2 b^{2}+(c+a)^{2}}+\frac{(2 c+a+b)^{2}}{2 c^{2}+(a+b)^{2}} \leq 8
$$

6. At the vertices of a regular hexagon are written six nonnegative integers whose sum is 2003. Bert is allowed to make moves of the following form: he may pick a vertex and replace the number written there by the absolute value of the difference between the numbers written at the two neighboring vertices. Prove that Bert can make a sequence of moves, after which the number 0 appears at all six vertices.

2 Team Selection Test

44th IMO Team Selection Test

Lincoln, Nebraska

Day I 1:00 PM - 5:30 PM
June 20, 2003

1. For a pair of integers a and b, with $0<a<b<1000$, the set $S \subseteq\{1,2, \ldots, 2003\}$ is called a skipping set for (a, b) if for any pair of elements $s_{1}, s_{2} \in S,\left|s_{1}-s_{2}\right| \notin\{a, b\}$. Let $f(a, b)$ be the maximum size of a skipping set for (a, b). Determine the maximum and minimum values of f.
2. Let $A B C$ be a triangle and let P be a point in its interior. Lines $P A, P B$, and $P C$ intersect sides $B C, C A$, and $A B$ at D, E, and F, respectively. Prove that

$$
[P A F]+[P B D]+[P C E]=\frac{1}{2}[A B C]
$$

if and only if P lies on at least one of the medians of triangle $A B C$. (Here $[X Y Z]$ denotes the area of triangle $X Y Z$.)
3. Find all ordered triples of primes (p, q, r) such that

$$
p\left|q^{r}+1, \quad q\right| r^{p}+1, \quad r \mid p^{q}+1
$$

44th IMO Team Selection Test

Lincoln, Nebraska

Day II 8:30 AM - 1:00 PM

June 21, 2003
4. Let \mathbb{N} denote the set of positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f(m+n) f(m-n)=f\left(m^{2}\right)
$$

for all $m, n \in \mathbb{N}$.
5. Let a, b, c be real numbers in the interval $\left(0, \frac{\pi}{2}\right)$. Prove that

$$
\begin{aligned}
& \frac{\sin a \sin (a-b) \sin (a-c)}{\sin (b+c)} \\
+ & \frac{\sin b \sin (b-c) \sin (b-a)}{\sin (c+a)} \\
+ & \frac{\sin c \sin (c-a) \sin (c-b)}{\sin (a+b)} \geq 0 .
\end{aligned}
$$

6. Let $\overline{A H_{1}}, \overline{B H_{2}}$, and $\overline{\mathrm{CH}_{3}}$ be the altitudes of an acute scalene triangle $A B C$. The incircle of triangle $A B C$ is tangent to $\overline{B C}, \overline{C A}$, and $\overline{A B}$ at T_{1}, T_{2}, and T_{3}, respectively. For $k=1,2,3$, let P_{i} be the point on line $H_{i} H_{i+1}$ (where $H_{4}=H_{1}$) such that $H_{i} T_{i} P_{i}$ is an acute isosceles triangle with $H_{i} T_{i}=H_{i} P_{i}$. Prove that the circumcircles of triangles $T_{1} P_{1} T_{2}, T_{2} P_{2} T_{3}, T_{3} P_{3} T_{1}$ pass through a common point.

3 IMO

44th International Mathematical Olympiad

Tokyo, Japan
Day I $\quad 9$ AM - 1:30 PM
July 13, 2003

1. Let A be a 101 -element subset of the set $S=\{1,2, \ldots, 1000000\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\} \quad j=1,2, \ldots, 100
$$

are pairwise disjoint.
2. Determine all pairs of positive integers (a, b) such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.
3. A convex hexagon is given in which any two opposite sides have the following property: the distance between their midpoints is $\sqrt{3} / 2$ times the sum of their lengths. Prove that all the angles of the hexagon are equal.
(A convex $A B C D E F$ has three pairs of opposite sides: $A B$ and $D E, B C$ and $E F, C D$ and $F A$.)

44th International Mathematical Olympiad

Tokyo, Japan

Day II 9 AM - 1:30 PM
July 14, 2003
4. Let $A B C D$ be a convex quadrilateral. Let P, Q and R be the feet of perpendiculars from D to lines $B C, C A$ and $A B$, respectively. Show that $P Q=Q R$ if and only if the bisectors of angles $A B C$ and $A D C$ meet on segment $A C$.
5. Let n be a positive integer and $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers with $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$.
(a) Prove that

$$
\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}-x_{j}\right)^{2}
$$

(b) Show that the equality holds if and only if $x_{1}, x_{2}, \ldots, x_{n}$ form an arithmetic sequence.
6. Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q.

2

Hínts

I USAMO

1. Try small cases, and build up this number one digit a time. This number is unique. We did not ask for the uniqueness in the statement in order to not hint to the approach in the Third Solution.
2. Reduce the problem to a quadrilateral with lots of angles with rational cosine values.
3. If the value of a term stays the same for one step, it becomes stable.
4. Let $X Y Z$ be a triangle with M the midpoint of side $Y Z$. Point P lies on segment $X M$. Lines $Y P$ and $X Z$ meet at $Q, Z P$ and $X Y$ at R. Then $R Q \| Y Z$.
5. It suffices to prove the desired result by assuming, additionally, that $a+b+c=3$.
6. Controlling the maximum of the six numbers is not enough.

2 Team Selection Test

1. The extremes can be obtained by different approaches. One requires the greedy algorithm, another applies congruence theory.
2. Apply the ingredients that prove Ceva's Theorem to convert this into an algebra problem.
3. Prove that one of the primes is 2 .
4. Play with the given relation and compute many values of the function.
5. Reduce this to Schur's Inequality.
6. The common point is the orthocenter of triangle $T_{1} T_{2} T_{3}$.

3 IMO

1. The greedy algorithm works!
2. Assume that $a^{2} /\left(2 a b^{2}-b^{3}+1\right)=k$, or, $a^{2}=2 a b^{2} k-b^{3} k+k$, where k is a positive integer. Consider the quadratic equation $x^{2}-2 b^{2} k x+$ $\left(b^{3}-1\right) k=0$ for fixed positive integers b and k.
3. View the given conditions as equality cases of some geometric inequalities and consider the angles formed by three major diagonals.
4. Apply the Extended Law of Sines.
5. This is a clear-cut application of Cauchy-Schwarz Inequality.
6. The prime q is a divisor of $p^{p}-1$.

3

Formal Solutions

I USAMO

1. Prove that for every positive integer n there exists an n-digit number divisible by 5^{n} all of whose digits are odd.

First Solution. We proceed by induction. The property is clearly true for $n=1$. Assume that $N=a_{1} a_{2} \ldots a_{n}$ is divisible by 5^{n} and has only odd digits. Consider the numbers

$$
\begin{aligned}
& N_{1}=1 a_{1} a_{2} \ldots a_{n}=1 \cdot 10^{n}+5^{n} M=5^{n}\left(1 \cdot 2^{n}+M\right), \\
& N_{2}=3 a_{1} a_{2} \ldots a_{n}=3 \cdot 10^{n}+5^{n} M=5^{n}\left(3 \cdot 2^{n}+M\right), \\
& N_{3}=5 a_{1} a_{2} \ldots a_{n}=5 \cdot 10^{n}+5^{n} M=5^{n}\left(5 \cdot 2^{n}+M\right), \\
& N_{4}=7 a_{1} a_{2} \ldots a_{n}=7 \cdot 10^{n}+5^{n} M=5^{n}\left(7 \cdot 2^{n}+M\right), \\
& N_{5}=9 a_{1} a_{2} \ldots a_{n}=9 \cdot 10^{n}+5^{n} M=5^{n}\left(9 \cdot 2^{n}+M\right) .
\end{aligned}
$$

The numbers $1 \cdot 2^{n}+M, 3 \cdot 2^{n}+M, 5 \cdot 2^{n}+M, 7 \cdot 2^{n}+M, 9 \cdot 2^{n}+M$ give distinct remainders when divided by 5 . Otherwise the difference of some two of them would be a multiple of 5 , which is impossible, because neither 2^{n} is a multiple of 5 , nor is the difference of any two of the numbers $1,3,5,7,9$. It follows that one of the numbers $N_{1}, N_{2}, N_{3}, N_{4}, N_{5}$ is divisible by $5^{n} \cdot 5$, and the induction is complete.

Second Solution. For an m digit number a, where $m \geq n$, let $\ell(a)$ denote the $m-n$ leftmost digits of a. (That is, we consider $\ell(a)$ as an ($m-n$)-digit number.) It is clear that we can choose a large odd number k such that $a_{0}=5^{n} \cdot k$ has at least n digits. Assume that a_{0} has m_{0} digits,
where $m_{0} \geq n$. Note that the a_{0} is an odd multiple of 5 . Hence the unit digit of a_{0} is 5 .

If the n rightmost digits of a_{0} are all odd, then the number $b_{0}=$ $a_{0}-\ell\left(a_{0}\right) \cdot 10^{n}$ satisfies the conditions of the problem, because b_{0} has only odd digits (the same as those n leftmost digits of a_{0}) and that b_{0} is the difference of two multiples of 5^{n}.

If there is an even digit among the n rightmost digits of a_{0}, assume that i_{1} is the smallest positive integer such that the i_{1} th rightmost digit of a_{0} is even. Then number $a_{1}=a_{0}+5^{n} \cdot 10^{i_{1}-1}$ is a multiple of 5^{n} with at least n digits. The $(i-1)$ th rightmost digit is the same as that of a_{0} and the i_{1} th rightmost digit of a_{1} is odd. If the n rightmost digits of a_{1} are all odd, then $b_{1}=a_{1}-\ell\left(a_{1}\right) \cdot 10^{n}$ satisfies the conditions of the problem. If there is an even digit among the n rightmost digits of a_{1}, assume that i_{2} is the smallest positive integer such that the i_{2} th rightmost digit of a_{1} is even. Then $i_{2}>i_{1}$. Set $a_{2}=a_{1}+5^{n} \cdot 10^{i_{2}-1}$. We can repeat the above process of checking the rightmost digits of a_{2} and eliminate the rightmost even digits of a_{2}, if there is such a digit among the n rightmost digits of a_{2}. This process can be repeated for at most $n-1$ times because the unit digit of a_{0} is 5 . Thus, we can obtain a number a_{k}, for some nonnegative integer k, such that a_{k} is a multiple of 5^{n} with its n rightmost digits all odd. Then $b_{k}=a_{k}-\ell\left(a_{k}\right) \cdot 10^{n}$ is a number that satisfies the conditions of the problem.

Third Solution. Consider all the nonnegative multiples of 5^{n} that have no more than n digits. There are 2^{n} such multiples, namely, $m_{0}=0, m_{1}=$ $5^{n}, m_{2}=2 \cdot 5^{n}, \ldots, m_{2^{n}-1}=\left(2^{n}-1\right) 5^{n}$. For each m_{i}, we define an n-digit binary string $s\left(m_{i}\right)$. If m_{i} is a k_{i}-digit number, the leftmost $n-k_{i}$ digits of $s\left(m_{i}\right)$ are all 0 's, and the j th digit, $1 \leq j \leq k_{i}$, of $s\left(m_{i}\right)$ is 1 (or 0) if the j th rightmost digit of m_{i} is odd (or even). (For example, for $n=4$, $m_{0}=0, m_{1}=625, m_{2}=1250$, and $s\left(m_{0}\right)=0000, s\left(m_{1}\right)=0001$, $s\left(m_{2}\right)=1010$.) There are $2^{n} n$-digit binary strings. It suffices to show that s is one-to-one, that is $s\left(m_{i}\right) \neq s\left(m_{j}\right)$ for $i \neq j$. Because then there must be a m_{i} with $s\left(m_{i}\right)$ being a string of $n 1$'s, that is, m_{i} has n digits and all of them are odd.

We write m_{i} and m_{j} in binary system. Then there is a smallest positive integer k such that the k th rightmost digit in the binary representations of m_{i} and m_{j} are different. Without loss of generality, we assume that those k th digits for m_{i} and m_{j} are 1 and 0 , respectively. Then $m_{i}=s_{i}+2^{k}+t$ and $m_{j}=s_{j}+t$, where s_{i}, s_{j}, t are positive integers such that 2^{k+1} divides
both s_{i} and s_{j} and that $0 \leq t \leq 2^{k}-1$. Note that adding $2^{k} \cdot 5^{n}$ to $t \cdot 5^{n}$ will change the parity of the $(k+1)$ th rightmost digit of $t \cdot 5^{n}$ while not affect the k rightmost digits of $t \cdot 5^{n}$. Note also that adding $s_{i} \cdot 5^{n}$ (or $s_{j} \cdot 5^{n}$) to $\left(2^{k}+t\right) \cdot 5^{n}$ (or $t \cdot 5^{n}$) will not affect the last $k+1$ digits of $\left(2^{k}+t\right) \cdot 5^{n}$ (or $t \cdot 5^{n}$). Hence the $(k+1$)th rightmost digits in the decimal representations of $m_{i} \cdot 5^{n}$ and $m_{j} \cdot 5^{n}$ have different parities. Thus $s\left(m_{i}\right) \neq s\left(m_{j}\right)$, as desired.
2. A convex polygon \mathcal{P} in the plane is dissected into smaller convex polygons by drawing all of its diagonals. The lengths of all sides and all diagonals of the polygon \mathcal{P} are rational numbers. Prove that the lengths of all sides of all polygons in the dissection are also rational numbers.

Solution. Let $\mathcal{P}=A_{1} A_{2} \ldots A_{n}$, where n is an integer with $n \geq 3$. The problem is trivial for $n=3$ because there are no diagonals and thus no dissections. We assume that $n \geq 4$. Our proof is based on the following Lemma.

Lemma Let $A B C D$ be a convex quadrilateral such that all its sides and diagonals have rational lengths. If segments $A C$ and $B D$ meet at P, then segments $A P, B P, C P, D P$ all have rational lengths.

It is clear by the Lemma that the desired result holds when \mathcal{P} is a convex quadrilateral. Let $A_{i} A_{j}(1 \leq i<j \leq n)$ be a diagonal of \mathcal{P}. Assume that $C_{1}, C_{2}, \ldots, C_{m}$ are the consecutive division points on diagonal $A_{i} A_{j}$ (where point C_{1} is the closest to vertex A_{i} and C_{m} is the closest to A_{j}). Then the segments $C_{\ell} C_{\ell+1}, 1 \leq \ell \leq m-1$, are the sides of all
polygons in the dissection. Let C_{ℓ} be the point where diagonal $A_{i} A_{j}$ meets diagonal $A_{s} A_{t}$. Then quadrilateral $A_{i} A_{s} A_{j} A_{t}$ satisfies the conditions of the Lemma. Consequently, segments $A_{i} C_{\ell}$ and $C_{\ell} A_{j}$ have rational lengths. Therefore, segments $A_{i} C_{1}, A_{i} C_{2}, \ldots, A_{j} C_{m}$ all have rational lengths. Thus, $C_{\ell} C_{\ell+1}=A C_{\ell+1}-A C_{\ell}$ is rational. Because i, j, ℓ are arbitrarily chosen, we proved that all sides of all polygons in the dissection are also rational numbers.

Now we present two proofs of the Lemma to finish our proof.

- First approach We show only that segment $A P$ is rational, the proof for the others being similar. Introduce Cartesian coordinates with $A=$ $(0,0)$ and $C=(c, 0)$. Put $B=(a, b)$ and $D=(d, e)$. Then by hypothesis, the numbers

$$
\begin{aligned}
& A B=\sqrt{a^{2}+b^{2}}, \quad A C=c, \quad A D=\sqrt{d^{2}+e^{2}} \\
& B C=\sqrt{(a-c)^{2}+b^{2}}, \quad B D=\sqrt{(a-d)^{2}+(b-e)^{2}} \\
& C D=\sqrt{(d-c)^{2}+e^{2}}
\end{aligned}
$$

are rational. In particular,

$$
B C^{2}-A B^{2}-A C^{2}=(a-c)^{2}+b^{2}-\left(a^{2}+b^{2}\right)-c^{2}=-2 a c
$$

is rational. Because $c \neq 0, a$ is rational. Likewise, d is rational.

Now we have that $b^{2}=A B^{2}-a^{2}, e^{2}=A D^{2}-d^{2}$, and $(b-e)^{2}=$ $B D^{2}-(a-d)^{2}$ are rational, and so that $2 b e=b^{2}+e^{2}-(b-e)^{2}$ is rational. Because quadrilateral $A B C D$ is convex, b and e are nonzero and have opposite sign. Hence $b / e=2 b e / 2 b^{2}$ is rational.

We now calculate

$$
P=\left(\frac{b d-a e}{b-e}, 0\right)
$$

so

$$
A P=\frac{\frac{b}{e} \cdot d-a}{\frac{b}{e}-1}
$$

is rational.

- Second approach To prove the Lemma, we set $\angle D A P=A_{1}$ and $\angle B A P=A_{2}$. Applying the Law of Cosines to triangles $A D C, A B C$, $A B D$ shows that angles $A_{1}, A_{2}, A_{1}+A_{2}$ all have rational cosine values. By the Addition formula, we have

$$
\sin A_{1} \sin A_{2}=\cos A_{1} \cos A_{2}-\cos \left(A_{1}+A_{2}\right)
$$

implying that $\sin A_{1} \sin A_{2}$ is rational.
Thus

$$
\frac{\sin A_{2}}{\sin A_{1}}=\frac{\sin A_{2} \sin A_{1}}{\sin ^{2} A_{1}}=\frac{\sin A_{2} \sin A_{1}}{1-\cos ^{2} A_{1}}
$$

is rational.

Note that the ratio between the areas of triangles $A D P$ and $A B P$ is equal to $\frac{P D}{B P}$. Therefore

$$
\frac{B P}{P D}=\frac{[A B P]}{[A D P]}=\frac{\frac{1}{2} A B \cdot A P \cdot \sin A_{2}}{\frac{1}{2} A D \cdot A P \cdot \sin A_{1}}=\frac{A B}{A D} \cdot \frac{\sin A_{2}}{\sin A_{1}},
$$

implying that $\frac{P D}{B P}$ is rational. Because $B P+P D=B D$ is rational, both $B P$ and $P D$ are rational. Similarly, $A P$ and $P C$ are rational, proving the Lemma.
3. Let $n \neq 0$. For every sequence of integers

$$
a=a_{0}, a_{1}, a_{2}, \ldots, a_{n}
$$

satisfying $0 \leq a_{i} \leq i$, for $i=0, \ldots, n$, define another sequence

$$
t(a)=t(a)_{0}, t(a)_{1}, t(a)_{2}, \ldots, t(a)_{n}
$$

by setting $t(a)_{i}$ to be the number of terms in the sequence a that precede the term a_{i} and are different from a_{i}. Show that, starting from any sequence a as above, fewer than n applications of the transformation t lead to a sequence b such that $t(b)=b$.

First Solution. Note first that the transformed sequence $t(a)$ also satisfies the inequalities $0 \leq t(a)_{i} \leq i$, for $i=0, \ldots, n$. Call any integer sequence that satisfies these inequalities an index bounded sequence.

We prove now that that $a_{i} \leq t(a)_{i}$, for $i=0, \ldots, n$. Indeed, this is clear if $a_{i}=0$. Otherwise, let $x=a_{i}>0$ and $y=t(a)_{i}$. None of the first x consecutive terms $a_{0}, a_{1}, \ldots, a_{x-1}$ is greater than $x-1$, so they are all different from x and precede x (see the diagram below). Thus $y \geq x$, that is, $a_{i} \leq t(a)_{i}$, for $i=0, \ldots, n$.

	0	1	\ldots	$x-1$	\ldots	i
a	a_{0}	a_{1}	\ldots	a_{x-1}	\ldots	x
$t(a)$	$t(a)_{0}$	$t(a)_{1}$	\ldots	$t(a)_{x-1}$	\ldots	y

This already shows that the sequences stabilize after finitely many applications of the transformation t, because the value of the index i term in index bounded sequences cannot exceed i. Next we prove that if $a_{i}=t(a)_{i}$, for some $i=0, \ldots, n$, then no further applications of t will ever change the index i term. We consider two cases.

- In this case, we assume that $a_{i}=t(a)_{i}=0$. This means that no term on the left of a_{i} is different from 0 , that is, they are all 0 . Therefore the first i terms in $t(a)$ will also be 0 and this repeats (see the diagram below).

	0	1	\ldots	i
a	0	0	\ldots	0
$t(a)$	0	0	\ldots	0

- In this case, we assume that $a_{i}=t(a)_{i}=x>0$. The first x terms are all different from x. Because $t(a)_{i}=x$, the terms $a_{x}, a_{x+1}, \ldots, a_{i-1}$ must then all be equal to x. Consequently, $t(a)_{j}=x$ for $j=x, \ldots, i-1$ and further applications of t cannot change the index i term (see the diagram below).

	0	1	\ldots	$x-1$	x	$x+1$	\ldots	i
a	a_{0}	a_{1}	\ldots	a_{x-1}	x	x	\ldots	x
$t(a)$	$t(a)_{0}$	$t(a)_{1}$	\ldots	$t(a)_{x-1}$	x	x	\ldots	x

For $0 \leq i \leq n$, the index i entry satisfies the following properties: (i) it takes integer values; (ii) it is bounded above by i; (iii) its value does not decrease under transformation t; and (iv) once it stabilizes under transformation t, it never changes again. This shows that no more than n applications of t lead to a sequence that is stable under the transformation t.

Finally, we need to show that no more than $n-1$ applications of t is needed to obtain a fixed sequence from an initial $n+1$-term index bounded sequence $a=\left(a_{0}, a_{1}, \ldots, a_{n}\right)$. We induct on n.

For $n=1$, the two possible index bounded sequences $\left(a_{0}, a_{1}\right)=(0,0)$ and $\left(a_{0}, a_{1}\right)=(0,1)$ are already fixed by t so we need zero applications of t.

Assume that any index bounded sequence $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ reach a fixed sequence after no more than $n-1$ applications of t. Consider an index bounded sequence $a=\left(a_{0}, a_{1}, \ldots, a_{n+1}\right)$. It suffices to show that a will be stabilized in no more than n applications of t. We approach indirectly by assuming on the contrary that $n+1$ applications of transformations are needed. This can happen only if $a_{n+1}=0$ and each application of t increased the index $n+1$ term by exactly 1 . Under transformation t, the resulting value of index i term will not be effected by index j term for $i<j$. Hence by the induction hypothesis, the subsequence $a^{\prime}=\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ will be stabilized in no more than $n-1$ applications of t. Because index n term is stabilized at value $x \leq n$ after no more than $\min \{x, n-1\}$ applications of t and index $n+1$ term obtains value x after exactly x applications of t under our current assumptions. We conclude that the index $n+1$ term would become equal to the index n term after no more than $n-1$ applications of t. However, once two consecutive terms in a sequence are equal they stay equal and stabilize together. Because the index n term needs no more than $n-1$ transformations to be stabilized, a can be stabilized in no more than $n-1$ applications of t, which contradicts our assumption of $n+1$ applications needed. Thus our assumption was
wrong and we need at most n applications of transformation t to stabilize an $(n+1)$-term index bounded sequence. This completes our inductive proof.

Note. There are two notable variations proving the last step.

- First variation The key case to rule out is $t^{i}(a)_{n}=i$ for $i=0, \ldots, n$. If $a_{n}=0$ and $t(a)_{n}=1$, then a has only one nonzero term. If it is a_{1}, then $t(a)=0,1,1, \ldots, 1$ and $t(t(a))=t(a)$, so $t(t(a))_{n} \neq 2$; if it is a_{i} for $i>1$, then $t(a)=0, \ldots, 0, i, 1, \ldots, 1$ and $t(t(a))=$ $0, \ldots, 0, i, i+1, \ldots, i+1$ and $t(t(a))_{n} \neq 2$. That's a contradiction either way. (Actually we didn't need to check the first case separately except for $n=2$; if $a_{n}=a_{n-1}=0$, they stay together and so get fixed at the same step.)
- Second variation Let b_{n-1} be the terminal value of a_{n-1}. Then a_{n-1} gets there at least as soon as a_{n} does (since a_{n} only rises one each time, whereas a_{n-1} rises by at least one until reaching b_{n-1} and then stops, and furthermore $a_{n-1} \geq 0=a_{n}$ to begin with), and when a_{n} does reach that point, it is equal to a_{n-1}. (Kiran Kedlaya, one of the graders of this problem, likes to call this a "tortoise and hare" argument-the hare a_{n-1} gets a head start but gets lazy and stops, so the tortoise a_{n} will catch him eventually.)

Second Solution. We prove that for $n \geq 2$, the claim holds without the initial condition $0 \leq a_{i} \leq i$. (Of course this does not prove anything stronger, but it's convenient.) We do this by induction on n, the case $n=2$ being easy to check by hand as in the first solution.

Note that if $c=\left(c_{0}, \ldots, c_{n}\right)$ is a sequence in the image of t, and d is the sequence $\left(c_{1}, \ldots, c_{n}\right)$, then the following two statements are true:
(a) If e is the sequence obtained from d by subtracting 1 from each nonzero term, then $t(d)=t(e)$. (If there are no zero terms in d, then subtracting 1 clearly has no effect. If there is a zero term in d, it must occur at the beginning, and then every nonzero term is at least 2.)
(b) One can compute $t(c)$ by applying t to the sequence c_{1}, \ldots, c_{n}, adding 1 to each nonzero term, and putting a zero in front.

The recipe of (b) works for computing $t^{i}(c)$ for any i, by (a) and induction on i.

We now apply the induction hypothesis to $t(a)_{1}, \ldots, t(a)_{n}$ to see that it stabilizes after $n-2$ more applications of t; by the recipe above, that means a stabilizes after $n-1$ applications of t.

Note. A variation of the above approach is the following. Instead of pulling off one zero, pull off all initial zeroes of a_{0}, \ldots, a_{n}. (Or rather, pull off all terms equal to the initial term, whatever it is.) Say there are $k+1$ of them (clearly $k \leq n$); after $\min \{k, 2\}$ applications of t, there will be $k+1$ initial zeroes and all remaining terms are at least k. So now $\max \{1, n-k-2\}$ applications of t will straighten out the end, for a total of $\min \{k, 2\}+\max \{1, n-k-2\}$. A little case analysis shows that this is good enough: if $k+1 \leq n-1$, then this sum is at most $n-1$ except maybe if $3>n-1$, i.e., $n \leq 3$, which can be checked by hand. If $k+1>n-1$ and we assume $n \geq 4$, then $k \geq n-1 \geq 3$, so the sum is $2+\max \{1, n-k-2\} \leq \max \{3, n-k\} \leq n-1$.
4. Let $A B C$ be a triangle. A circle passing through A and B intersects segments $A C$ and $B C$ at D and E, respectively. Rays $B A$ and $E D$ intersect at F while lines $B D$ and $C F$ intersect at M. Prove that $M F=M C$ if and only if $M B \cdot M D=M C^{2}$.

First Solution. Extend segment $D M$ through M to G such that $F G \|$ $C D$.

Then $M F=M C$ if and only if quadrilateral $C D F G$ is a parallelogram, or, $F D \| C G$. Hence $M C=M F$ if and only if $\angle G C D=\angle F D A$, that is, $\angle F D A+\angle C G F=180^{\circ}$.

Because quadrilateral $A B E D$ is cyclic, $\angle F D A=\angle A B E$. It follows that $M C=M F$ if and only if

$$
180^{\circ}=\angle F D A+\angle C G F=\angle A B E+\angle C G F
$$

that is, quadrilateral $C B F G$ is cyclic, which is equivalent to

$$
\angle C B M=\angle C B G=\angle C F G=\angle D C F=\angle D C M
$$

Because $\angle D M C=\angle C M B, \angle C B M=\angle D C M$ if and only if triangles $B C M$ and $C D M$ are similar, that is

$$
\frac{C M}{B M}=\frac{D M}{C M}
$$

or $M B \cdot M D=M C^{2}$.

Second Solution.

We first assume that $M B \cdot M D=M C^{2}$. Because $\frac{M C}{M D}=\frac{M B}{M C}$ and $\angle C M D=\angle B M C$, triangles $C M D$ and $B M C$ are similar. Consequently, $\angle M C D=\angle M B C$. Because quadrilateral $A B E D$ is cyclic, $\angle D A E=\angle D B E$. Hence

$$
\angle F C A=\angle M C D=\angle M B C=\angle D B E=\angle D A E=\angle C A E
$$

implying that $A E \| C F$, and so $\angle A E F=\angle C F E$. Because quadrilateral $A B E D$ is cyclic, $\angle A B D=\angle A E D$. Hence

$$
\angle F B M=\angle A B D=\angle A E D=\angle A E F=\angle C F E=\angle M F D .
$$

Because $\angle F B M=\angle D F M$ and $\angle F M B=\angle D M F$, triangles $B F M$ and $F D M$ are similar. Consequently, $\frac{F M}{D M}=\frac{B M}{F M}$, or $F M^{2}=B M$. $D M=C M^{2}$. Therefore $M C^{2}=M B \cdot M D$ implies $M C=M F$.

Now we assume that $M C=M F$. Applying Ceva's Theorem to triangle $B C F$ and cevians $B M, C A, F E$ gives

$$
\frac{B A}{A F} \cdot \frac{F M}{M C} \cdot \frac{C E}{E B}=1
$$

implying that $\frac{B A}{A F}=\frac{B E}{E C}$, so $A E \| C F$. Thus, $\angle D C M=\angle D A E$. Because quadrilateral $A B E D$ is cyclic, $\angle D A E=\angle D B E$. Hence

$$
\angle D C M=\angle D A E=\angle D B E=\angle C B M
$$

Because $\angle C B M=\angle D C M$ and $\angle C M B=\angle D M C$, triangles $B C M$ and $C D M$ are similar. Consequently, $\frac{C M}{D M}=\frac{B M}{C M}$, or $C M^{2}=B M \cdot D M$.

Combining the above, we conclude that $M F=M C$ if and only if $M B \cdot M D=M C^{2}$.
5. Let a, b, c be positive real numbers. Prove that

$$
\frac{(2 a+b+c)^{2}}{2 a^{2}+(b+c)^{2}}+\frac{(2 b+c+a)^{2}}{2 b^{2}+(c+a)^{2}}+\frac{(2 c+a+b)^{2}}{2 c^{2}+(a+b)^{2}} \leq 8
$$

First Solution. (Based on work by Matthew Tang and Anders Kaseorg) By multiplying a, b, and c by a suitable factor, we reduce the problem to the case when $a+b+c=3$. The desired inequality reads

$$
\frac{(a+3)^{2}}{2 a^{2}+(3-a)^{2}}+\frac{(b+3)^{2}}{2 b^{2}+(3-b)^{2}}+\frac{(c+3)^{2}}{2 c^{2}+(3-c)^{2}} \leq 8
$$

Set

$$
f(x)=\frac{(x+3)^{2}}{2 x^{2}+(3-x)^{2}}
$$

It suffices to prove that $f(a)+f(b)+f(c) \leq 8$. Note that

$$
\begin{aligned}
f(x) & =\frac{x^{2}+6 x+9}{3\left(x^{2}-2 x+3\right)}=\frac{1}{3} \cdot \frac{x^{2}+6 x+9}{x^{2}-2 x+3} \\
& =\frac{1}{3}\left(1+\frac{8 x+6}{x^{2}-2 x+3}\right) \\
& =\frac{1}{3}\left(1+\frac{8 x+6}{(x-1)^{2}+2}\right) \leq \frac{1}{3}\left(1+\frac{8 x+6}{2}\right) \\
& =\frac{1}{3}(4 x+4)
\end{aligned}
$$

Hence,

$$
f(a)+f(b)+f(c) \leq \frac{1}{3}(4 a+4+4 b+4+4 c+4)=8
$$

as desired, with equality if and only if $a=b=c$.
Second Solution. (By Liang Qin) Setting $x=a+b, y=b+c, z=c+a$ gives $2 a+b+c=x+z$, hence $2 a=x+z-y$ and their analogous forms. The desired inequality becomes

$$
\begin{aligned}
\frac{2(x+z)^{2}}{(x+z-y)^{2}+2 y^{2}} & +\frac{2(z+y)^{2}}{(z+y-x)^{2}+2 x^{2}} \\
& +\frac{2(y+x)^{2}}{(y+x-z)^{2}+2 z^{2}} \leq 8
\end{aligned}
$$

Because $2\left(s^{2}+t^{2}\right) \geq(s+t)^{2}$ for all real numbers s and t, we have $2(x+z-y)^{2}+2 y^{2} \geq(x+z-y+y)^{2}=(x+z)^{2}$. Hence

$$
\begin{aligned}
\frac{2(x+z)^{2}}{(x+z-y)^{2}+2 y^{2}} & =\frac{4(x+z)^{2}}{2(x+z-y)^{2}+4 y^{2}} \leq \frac{4(x+z)^{2}}{(x+z)^{2}+2 y^{2}} \\
& =\frac{4}{1+2 \cdot \frac{y^{2}}{(x+z)^{2}}} \leq \frac{4}{1+2 \cdot \frac{y^{2}}{2\left(x^{2}+z^{2}\right)}} \\
& =\frac{4\left(x^{2}+z^{2}\right)}{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

It is not difficult to see that the desired result follows from summing up the above inequality and its analogous forms.

Third Solution. (By Richard Stong) Note that

$$
\begin{aligned}
(2 x+y)^{2}+2(x-y)^{2} & =4 x^{2}+4 x y+y^{2}+2 x^{2}-4 x y+2 y^{2} \\
& =3\left(2 x^{2}+y^{2}\right)
\end{aligned}
$$

Setting $x=a$ and $y=b+c$ yields

$$
(2 a+b+c)^{2}+2(a-b-c)^{2}=3\left(2 a^{2}+(b+c)^{2}\right) .
$$

Thus, we have

$$
\begin{aligned}
\frac{(2 a+b+c)^{2}}{2 a^{2}+(b+c)^{2}} & =\frac{3\left(2 a^{2}+(b+c)^{2}\right)-2(a-b-c)^{2}}{2 a^{2}+(b+c)^{2}} \\
& =3-\frac{2(a-b-c)^{2}}{2 a^{2}+(b+c)^{2}}
\end{aligned}
$$

and its analogous forms. Thus, the desired inequality is equivalent to

$$
\frac{(a-b-c)^{2}}{2 a^{2}+(b+c)^{2}}+\frac{(b-a-c)^{2}}{2 b^{2}+(c+a)^{2}}+\frac{(c-a-b)^{2}}{2 c^{2}+(a+b)^{2}} \geq \frac{1}{2} .
$$

Because $(b+c)^{2} \leq 2\left(b^{2}+c^{2}\right)$, we have $2 a^{2}+(b+c)^{2} \leq 2\left(a^{2}+b^{2}+c^{2}\right)$ and its analogous forms. It suffices to show that

$$
\frac{(a-b-c)^{2}}{2\left(a^{2}+b^{2}+c^{2}\right)}+\frac{(b-a-c)^{2}}{2\left(a^{2}+b^{2}+c^{2}\right)}+\frac{(c-a-b)^{2}}{2\left(a^{2}+b^{2}+c^{2}\right)} \geq \frac{1}{2}
$$

or,

$$
(a-b-c)^{2}+(b-a-c)^{2}+(c-a-b)^{2} \geq a^{2}+b^{2}+c^{2} .
$$

Multiplying this out, the left-hand side of the last inequality becomes $3\left(a^{2}+b^{2}+c^{2}\right)-2(a b+b c+c a)$. Therefore the last inequality is equivalent to $2\left[a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right] \geq 0$, which is evident because

$$
2\left[a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right]=(a-b)^{2}+(b-c)^{2}+(c-a)^{2} .
$$

Equalities hold if and only if $(b+c)^{2}=2\left(b^{2}+c^{2}\right)$ and $(c+a)^{2}=2\left(c^{2}+a^{2}\right)$, that is, $a=b=c$.

Fourth Solution. We first convert the inequality into

$$
\frac{2 a(a+2 b+2 c)}{2 a^{2}+(b+c)^{2}}+\frac{2 b(b+2 c+2 a)}{2 b^{2}+(c+a)^{2}}+\frac{2 c(c+2 a+2 b)}{2 c^{2}+(a+b)^{2}} \leq 5 .
$$

Splitting the 5 among the three terms yields the equivalent form

$$
\begin{equation*}
\sum_{\mathrm{cyc}} \frac{4 a^{2}-12 a(b+c)+5(b+c)^{2}}{3\left[2 a^{2}+(b+c)^{2}\right]} \geq 0, \tag{1}
\end{equation*}
$$

where $\sum_{\text {cyc }}$ is the cyclic sum of variables (a, b, c). The numerator of the term shown factors as $(2 a-x)(2 a-5 x)$, where $x=b+c$. We will show
that

$$
\begin{equation*}
\frac{(2 a-x)(2 a-5 x)}{3\left(2 a^{2}+x^{2}\right)} \geq-\frac{4(2 a-x)}{3(a+x)} \tag{2}
\end{equation*}
$$

Indeed, (2) is equivalent to

$$
(2 a-x)\left[(2 a-5 x)(a+x)+4\left(2 a^{2}+x^{2}\right)\right] \geq 0
$$

which reduces to

$$
(2 a-x)\left(10 a^{2}-3 a x-x^{2}\right)=(2 a-x)^{2}(5 a+x) \geq 0
$$

which is evident. We proved that

$$
\frac{4 a^{2}-12 a(b+c)+5(b+c)^{2}}{3\left[2 a^{2}+(b+c)^{2}\right]} \geq-\frac{4(2 a-b-c)}{3(a+b+c)}
$$

hence (1) follows. Equality holds if and only if $2 a=b+c, 2 b=c+a$, $2 c=a+b$, i.e., when $a=b=c$.

Fifth Solution. Given a function f of n variables, we define the symmetric sum

$$
\sum_{\mathrm{sym}} f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma} f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

where σ runs over all permutations of $1, \ldots, n$ (for a total of $n!$ terms). For example, if $n=3$, and we write x, y, z for x_{1}, x_{2}, x_{3},

$$
\begin{aligned}
\sum_{\text {sym }} x^{3} & =2 x^{3}+2 y^{3}+2 z^{3} \\
\sum_{\text {sym }} x^{2} y & =x^{2} y+y^{2} z+z^{2} x+x^{2} z+y^{2} x+z^{2} y \\
\sum_{\text {sym }} x y z & =6 x y z .
\end{aligned}
$$

We combine the terms in the desired inequality over a common denominator and use symmetric sum notation to simplify the algebra. The numerator of the difference between the two sides is

$$
\begin{equation*}
2 \sum_{\mathrm{sym}} 4 a^{6}+4 a^{5} b+a^{4} b^{2}+5 a^{4} b c+5 a^{3} b^{3}-26 a^{3} b^{2} c+7 a^{2} b^{2} c^{2} \tag{3}
\end{equation*}
$$

and it suffices to show the the expression in (3) is always greater or equal to 0 . By the Weighted AM-GM Inequality, we have $4 a^{6}+b^{6}+c^{6} \geq 6 a^{4} b c$, $3 a^{5} b+3 a^{5} c+b^{5} a+c^{5} a \geq 8 a^{4} b c$, and their analogous forms. Adding those
inequalities yields

$$
\sum_{\text {sym }} 6 a^{6} \geq \sum_{\text {sym }} 6 a^{4} b c \quad \text { and } \quad \sum_{\text {sym }} 8 a^{5} b \geq \sum_{\text {sym }} 8 a^{4} b c
$$

Consequently, we obtain

$$
\begin{equation*}
\sum_{\mathrm{sym}} 4 a^{6}+4 a^{5} b+5 a^{4} b c \geq \sum_{\mathrm{sym}} 13 a^{4} b c \tag{4}
\end{equation*}
$$

Again by the AM-GM Inequality, we have $a^{4} b^{2}+b^{4} c^{2}+c^{4} a^{2} \geq 4 a^{2} b^{2} c^{2}$, $a^{3} b^{3}+b^{3} c^{3}+c^{3} a^{3} \geq 3 a^{2} b^{2} c^{2}$, and their analogous forms. Thus,

$$
\sum_{\mathrm{sym}} a^{4} b^{2}+5 a^{3} b^{3} \geq \sum_{\mathrm{sym}} 6 a^{2} b^{2} c^{2}
$$

or

$$
\begin{equation*}
\sum_{\text {sym }} a^{4} b^{2}+5 a^{3} b^{3}+7 a^{2} b^{2} c^{2} \geq \sum_{\text {sym }} 13 a^{2} b^{2} c^{2} \tag{5}
\end{equation*}
$$

Recalling Schur's Inequality, we have

$$
\begin{aligned}
a^{3}+b^{3}+ & c^{3}+3 a b c-\left(a^{2} b+b^{2} c+c^{2} a+a b^{2}+b c^{2}+c a^{2}\right) \\
& =a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) \geq 0
\end{aligned}
$$

or

$$
\sum_{\text {sym }} a^{3}-2 a^{2} b+a b c \geq 0
$$

Thus

$$
\begin{equation*}
\sum_{\mathrm{sym}} 13 a^{4} b c-26 a^{3} b^{2} c+13 a^{2} b^{2} c^{2} \geq 13 a b c \sum_{\text {sym }} a^{3}-2 a^{2} b+a b c \geq 0 \tag{6}
\end{equation*}
$$

Adding (4), (5), and (6) yields (3).
Note. While the last two methods seem inefficient for this problem, they hold the keys to proving the following inequality:

$$
\frac{(b+c-a)^{2}}{(b+c)^{2}+a^{2}}+\frac{(c+a-b)^{2}}{(c+a)^{2}+b^{2}}+\frac{(a+b-c)^{2}}{(a+b)^{2}+c^{2}} \geq \frac{3}{5}
$$

where a, b, c are positive real numbers.
6. At the vertices of a regular hexagon are written six nonnegative integers whose sum is 2003. Bert is allowed to make moves of the following form: he may pick a vertex and replace the number written there by the absolute value of the difference between the numbers written at the two neighboring vertices. Prove that Bert can make a sequence of moves, after which the number 0 appears at all six vertices.

Note. Let

$$
A_{F E}^{B C} D
$$

denote a position, where A, B, C, D, E, F denote the numbers written on the vertices of the hexagon. We write

$$
A_{F E}^{B} C \quad(\bmod 2)
$$

if we consider the numbers written modulo 2 .
This is the hardest problem on the test. Many students thought they had made considerable progress. Indeed, there were only a handful of contestants who were able to find some algorithm without major flaws. Richard Stong, one of the graders of this problem, wrote the following summary.

There is an obvious approach one can take to reducing this problem, namely the greedy algorithm: reducing the largest value. As is often the case, this approach is fundamentally flawed. If the initial values are

$$
1 \begin{aligned}
& 32 \\
& n 7
\end{aligned}
$$

where n is an integer greater than 7 , then the first move following the greedy algorithm gives

$$
1 \begin{aligned}
& 3 \\
& 6
\end{aligned}{ }^{2} 5
$$

No set of moves can lead from these values to the all zeroes by a parity argument. This example also shows that there is no sequence of moves which always reduces the sum of the six entries and leads to the all zeroes. A correct solution to the problem requires first choosing some parity constraint to avoid the

$$
\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} 1 \quad(\bmod 2)
$$

situation, which is invariant under the operation. Secondly one needs to find some moves that preserve the chosen constraint and reduce the six values.

Solution. Define the sum and maximum of a position to be the sum and maximum of the six numbers at the vertices. We will show that from any position in which the sum is odd, it is possible to reach the all-zero position.

Our strategy alternates between two steps:
(a) from a position with odd sum, move to a position with exactly one odd number;
(b) from a position with exactly one odd number, move to a position with odd sum and strictly smaller maximum, or to the all-zero position.

Note that no move will ever increase the maximum, so this strategy is guaranteed to terminate, because each step of type (b) decreases the maximum by at least one, and it can only terminate at the all-zero position. It suffices to show how each step can be carried out.

First, consider a position

$$
A_{F E}^{B} C
$$

with odd sum. Then either $A+C+E$ or $B+D+F$ is odd; assume without loss of generality that $A+C+E$ is odd. If exactly one of A, C and E is odd, say A is odd, we can make the sequence of moves

$$
{ }_{1} \begin{array}{ll}
B & 0 \\
F & 0
\end{array} D \rightarrow 1 \begin{array}{ll}
\mathbf{1} & 0 \\
1 & 0
\end{array} \mathbf{0}^{2} \rightarrow \mathbf{0} \begin{array}{ll}
1 & 0 \\
1 & 0
\end{array} 0 \rightarrow 0 \begin{array}{lll}
1 & 0 \\
\mathbf{0} & 0
\end{array} 0 \quad(\bmod 2),
$$

where a letter or number in boldface represents a move at that vertex, and moves that do not affect each other have been written as a single move for brevity. Hence we can reach a position with exactly one odd number. Similarly, if A, C, E are all odd, then the sequence of moves
brings us to a position with exactly one odd number. Thus we have shown how to carry out step (a).

Now assume that we have a position

$$
A_{F E}^{B C} D
$$

with A odd and all other numbers even. We want to reach a position with smaller maximum. Let M be the maximum. There are two cases, depending on the parity of M.

- In this case, M is even, so one of B, C, D, E, F is the maximum. In particular, $A<M$.

We claim after making moves at B, C, D, E, and F in that order, the sum is odd and the maximum is less than M. Indeed, the following
sequence

$$
\begin{aligned}
& 1 \begin{array}{ll}
0 & 0 \\
0 & 0
\end{array} 0 \rightarrow 1 \begin{array}{ll}
1 & 0 \\
0 & 0
\end{array} 0 \rightarrow 1 \begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}
\end{aligned}
$$

shows how the numbers change in parity with each move. Call this new position

$$
\begin{aligned}
& A^{\prime} B^{\prime} C^{\prime} \\
& F^{\prime} E^{\prime} D^{\prime}
\end{aligned}
$$

The sum is odd, since there are five odd numbers. The numbers A^{\prime}, B^{\prime}, $C^{\prime}, D^{\prime}, E^{\prime}$ are all less than M, since they are odd and M is even, and the maximum can never increase. Also, $F^{\prime}=\left|A^{\prime}-E^{\prime}\right| \leq \max \left\{A^{\prime}, E^{\prime}\right\}<$ M. So the maximum has been decreased.

- In this case, M is odd, so $M=A$ and the other numbers are all less than M.

If $C>0$, then we make moves at B, F, A, and F, in that order. The sequence of positions is

$$
\begin{aligned}
& 1 \begin{array}{ll}
0 & 0 \\
0 & 0
\end{array} 0 \rightarrow 1 \begin{array}{lll}
1 & 0 \\
0 & 0
\end{array} 0 \rightarrow 1 \begin{array}{ll}
1 & 0 \\
1 & 0
\end{array} \\
& \rightarrow \mathbf{0} \begin{array}{ll}
1 & 0 \\
1 & 0
\end{array} 0 \rightarrow 0 \begin{array}{lll}
1 & 0 \\
\mathbf{0} & 0
\end{array} 0(\bmod 2) .
\end{aligned}
$$

Call this new position

$$
\begin{aligned}
& A^{\prime} B^{\prime} C^{\prime} D^{\prime} \\
& F^{\prime} E^{\prime}
\end{aligned}
$$

The sum is odd, since there is exactly one odd number. As before, the only way the maximum could not decrease is if $B^{\prime}=A$; but this is impossible, since $B^{\prime}=|A-C|<A$ because $0<C<M=A$. Hence we have reached a position with odd sum and lower maximum.

If $E>0$, then we apply a similar argument, interchanging B with F and C with E.

If $C=E=0$, then we can reach the all-zero position by the following sequence of moves:
(Here 0 represents zero, not any even number.)
Hence we have shown how to carry out a step of type (b), proving the desired result. The problem statement follows since 2003 is odd.

Note. Observe that from positions of the form

$$
{ }^{0} \begin{array}{ll}
1 & 1 \\
1 & 1
\end{array} 0 \quad(\bmod 2) \quad \text { or rotations }
$$

it is impossible to reach the all-zero position, because a move at any vertex leaves the same value modulo 2. Dividing out the greatest common divisor of the six original numbers does not affect whether we can reach the all-zero position, so we may assume that the numbers in the original position are not all even. Then by a more complete analysis in step (a), one can show from any position not of the above form, it is possible to reach a position with exactly one odd number, and thus the all-zero position. This gives a complete characterization of positions from which it is possible to reach the all-zero position.

There are many ways to carry out the case analysis in this problem; the one used here is fairly economical. The important idea is the formulation of a strategy that decreases the maximum value while avoiding the "bad" positions described above.

Second Solution. (By Richard Stong) We will show that if there is a pair of opposite vertices with odd sum (which of course is true if the sum of all the vertices is odd), then we can reduce to a position of all zeros.

Focus on such a pair $\{a, d\}$ with smallest possible $\max \{a, d\}$. We will show we can always reduce this smallest maximum of a pair of opposite vertices with odd sum or reduce to the all-zero position. Because the smallest maximum takes nonnegative integer values, we must be able to achieve the all-zero position.

To see this assume without loss of generality that $a \geq d$ and consider an $\operatorname{arc}(a, x, y, d)$ of the position

$$
a_{* *}^{x y} d
$$

Consider updating x and y alternately, starting with x. If $\max \{x, y\}>a$, then in at most two updates we reduce $\max \{x, y\}$. Thus, we can repeat this alternate updating process and we must eventually reach a point when $\max \{x, y\} \leq a$, and hence this will be true from then on.

Under this alternate updating process, the arc of the hexagon will eventually enter a unique cycle of length four modulo 2 in at most one update. Indeed, we have
and
or

$$
{ }_{0}^{0} 1
$$

and

Further note that each possible parity for x and y will occur equally often.
Applying this alternate updating process to both arcs (a, b, c, d) and (a, e, f, d) of

$$
a^{b} c
$$

we can make the other four entries be at most a and control their parity. Thus we can create a position

$$
a \begin{array}{ll}
x_{1} x_{2} \\
x_{5} x_{4}
\end{array} d
$$

with $x_{i}+x_{i+3}(i=1,2)$ odd and $M_{i}=\max \left\{x_{i}, x_{i+3}\right\} \leq a$. In fact, we can have $m=\min \left\{M_{1}, M_{2}\right\}<a$, as claimed, unless both arcs enter a cycle modulo 2 where the values congruent to a modulo 2 are always exactly a. More precisely, because the sum of x_{i} and x_{i+3} is odd, one of them is not congruent to a and so has its value strictly less than a. Thus both arcs must pass through the state (a, a, a, d) (modulo 2, this is either $(0,0,0,1)$ or $(1,1,1,0))$ in a cycle of length four. It is easy to check that for this to happen, $d=0$. Therefore, we can achieve the position

$$
{ }_{a}^{a} a a_{a}^{a} a
$$

From this position, the sequence of moves
completes the task.

Third Solution. (By Tiankai Liu) In the beginning, because $A+B+C+$ $D+E+F$ is odd, either $A+C+E$ or $B+D+F$ is odd; assume without loss of generality it is the former. Perform the following steps repeatedly.
a. In this case we assume that A, C, E are all nonzero. Suppose without loss of generality that $A \geq C \geq E$. Perform the sequence of moves

$$
\begin{aligned}
A_{F}^{B C} D & \rightarrow A \begin{array}{c}
(\boldsymbol{A}-\boldsymbol{C}) C \\
(\boldsymbol{A}-\boldsymbol{E}) E
\end{array}(\boldsymbol{C}-\boldsymbol{E}) \\
& \rightarrow(\boldsymbol{C}-\boldsymbol{E}) \begin{array}{l}
(A-C) \\
(A-E)(\boldsymbol{A}-\boldsymbol{C})
\end{array}(C-E),
\end{aligned}
$$

which decreases the sum of the numbers in positions A, C, E while keeping that sum odd.
b. In this case we assume that exactly one among A, C, E is zero. Assume without loss of generality that $A \geq C>E=0$. Then, because $A+C+E$ is odd, A must be strictly greater than C. Therefore, $-A<A-2 C<A$, and the sequence of moves

$$
\begin{aligned}
A \begin{array}{ll}
B & C \\
F & D
\end{array} & \rightarrow A \begin{array}{cc}
(\boldsymbol{A}-\boldsymbol{C}) & C \\
\boldsymbol{A} & 0 \\
& \\
& \rightarrow \boldsymbol{C}^{(A-C)} \\
& A-2 \boldsymbol{A} \mid \\
& C
\end{array}
\end{aligned}
$$

decreases the sum of the numbers in positions A, C, E while keeping that sum odd.
c. In this case we assume that exactly two among A, C, E are zero. Assume without loss of generality that $A>C=E=0$. Then perform the sequence of moves

$$
A{ }_{F}^{B} 0
$$

By repeatedly applying step (a) as long as it applies, then doing the same for step (b) if necessary, and finally applying step (c) if necessary,

$$
\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}
$$

can eventually be achieved.

2 Team Selection Test

1. For a pair of integers a and b, with $0<a<b<1000$, the set $S \subseteq\{1,2, \ldots, 2003\}$ is called a skipping set for (a, b) if for any pair of elements $s_{1}, s_{2} \in S,\left|s_{1}-s_{2}\right| \notin\{a, b\}$. Let $f(a, b)$ be the maximum size of a skipping set for (a, b). Determine the maximum and minimum values of f.

Note. This problem caused unexpected difficulties for students. It requires two ideas: applying the greedy algorithm to obtain the minimum and applying the Pigeonhole Principle on congruence classes to obtain the maximum. Most students were successful in getting one of the two ideas and obtaining one of the extremal values quickly, but then many of them failed to switch to the other idea. In turn, their solutions for the second extremal value were very lengthy and sometimes unsuccessful.

Solution. The maximum and minimum values of f are 1334 and 338, respectively.
(a) First, we will show that the maximum value of f is 1334 . The set $S=\{1,2, \ldots, 667\} \cup\{1336,1337, \ldots, 2002\}$ is a skipping set for $(a, b)=(667,668)$, so $f(667,668) \geq 1334$.

Now we prove that for any $0<a<b<1000, f(a, b) \leq 1334$. Because $a \neq b$, we can choose $d \in\{a, b\}$ such that $d \neq 668$. We assume first that $d \geq 669$. Then consider the $2003-d \leq 1334$ sets $\{1, d+1\},\{2, d+2\}, \ldots,\{2003-d, 2003\}$. Each can contain at most one element of S, so $|S| \leq 1334$.

We assume second that $d \leq 667$ and that $\left\lceil\frac{2003}{a}\right\rceil$ is even, that is, $\left\lceil\frac{2003}{a}\right\rceil=2 k$ for some positive integer k. Then each of the congruence classes of $1,2, \ldots, 2003$ modulo a contains at most $2 k$ elements. Therefore at most k members of each of these congruence classes can belong to S. Consequently,

$$
\begin{aligned}
|S| & \leq k a<\frac{1}{2}\left(\frac{2003}{a}+1\right) a=\frac{2003+a}{2} \\
& \leq 1335
\end{aligned}
$$

implying that $|S| \leq 1334$.
Finally, we assume that $d \leq 667$ and that $\left\lceil\frac{2003}{a}\right\rceil$ is odd, that is, $\left\lceil\frac{2003}{a}\right\rceil=2 k+1$ for some positive integer k. Then, as before, S can contain at most k elements from each congruence class of
$\{1,2, \ldots, 2 k a\}$ modulo a. Then

$$
\begin{aligned}
|S| & \leq k a+(2003-2 k a)=2003-k a \\
& =2003-\left(\frac{\left\lceil\frac{2003}{a}\right\rceil-1}{2}\right) a \\
& \leq 2003-\left(\frac{\frac{2003}{a}-1}{2}\right) a \\
& =\frac{2003+a}{2} \leq 1335 .
\end{aligned}
$$

The last inequality holds if and only if $a=667$. But if $a=667$, then $\frac{2003}{a}$ is not an integer, and so the second inequality is strict. Thus, $|S| \leq 1334$. Therefore the maximum value of f is 1334 .
(b) We will now show that the minimum value of f is 668 . First, we will show that $f(a, b) \geq 668$ by constructing a skipping set S for any (a, b) with $|S| \geq 668$. Note that if we add x to S, then we are not allowed to add $x, x+a$, or $x+b$ to S at any later time. Then at each step, let us add to S the smallest element of $\{1,2, \ldots, 2003\}$ that is not already in S and that has not already been disallowed from being in S. Then since adding this element prevents at most three elements from being added at any future time, we can always perform this step $\left\lceil\frac{2003}{3}\right\rceil=668$ times. Thus, $|S| \geq 668$, so $f(a, b) \geq 668$. Now notice that if we let $a=1, b=2$, then at most one element from each of the 668 sets $\{1,2,3\},\{4,5,6\}, \ldots,\{1999,2000,2001\},\{2002,2003\}$ can belong to S. This implies that $f(1,2)=668$, so indeed the minimum value of f is 668 .
2. Let $A B C$ be a triangle and let P be a point in its interior. Lines $P A, P B$, and $P C$ intersect sides $B C, C A$, and $A B$ at D, E, and F, respectively. Prove that

$$
[P A F]+[P B D]+[P C E]=\frac{1}{2}[A B C]
$$

if and only if P lies on at least one of the medians of triangle $A B C$. (Here $[X Y Z]$ denotes the area of triangle $X Y Z$.)

Solution. Let $[P A F]=x,[P B D]=y,[P C E]=z,[P A E]=u$, $[P C D]=v$, and $[P B F]=w$.

Note first that

$$
\begin{aligned}
& \frac{x}{w}=\frac{x+u+z}{w+y+v}=\frac{u+z}{y+v}=\frac{A F}{F B} \\
& \frac{y}{v}=\frac{x+y+w}{u+v+z}=\frac{x+w}{u+z}=\frac{B D}{D C} \\
& \frac{z}{u}=\frac{y+z+v}{x+u+w}=\frac{y+v}{x+w}=\frac{C E}{E A}
\end{aligned}
$$

Point P lies on one of the medians if and only if

$$
\begin{equation*}
(x-w)(y-v)(z-u)=0 \tag{*}
\end{equation*}
$$

By Ceva's Theorem, we have

$$
\frac{x y z}{u v w}=\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1
$$

or,

$$
\begin{equation*}
x y z=u v w \tag{1}
\end{equation*}
$$

Multiplying out $\frac{x}{w}=\frac{u+z}{y+v}$ yields $x y+x v=u w+z w$. Likewise, $u y+y z=$ $x v+v w$ and $x z+z w=u y+u v$. Summing up the last three relations, we obtain

$$
\begin{equation*}
x y+y z+z x=u v+v w+w u \tag{2}
\end{equation*}
$$

Now we are ready to prove the desired result. We first prove the "if" part by assuming that P lies on one of the medians, say $A D$. Then $y=v$, and so $\frac{y}{v}=\frac{x+w}{u+z}$ and $x y z=u v w$ become $x+w=u+z$ and $x z=u w$, respectively. Then the numbers $x,-z$ and $u,-w$ have the same sum and the same product. It follows that $x=u$ and $z=w$. Therefore $x+y+z=u+v+w$, as desired.

Conversely, we assume that

$$
\begin{equation*}
x+y+z=u+v+w \tag{3}
\end{equation*}
$$

From (1), (2), and (3) it follows that x, y, z and u, v, w are roots of the same degree three polynomial. Hence $\{x, y, z\}=\{u, v, w\}$. If $x=w$ or $y=v$ or $z=u$, then the conclusion follows by $(*)$. If $x=u, y=w$, and $z=v$, then from

$$
\frac{x}{w}=\frac{u+z}{y+v}=\frac{u+z-x}{y+v-w}=\frac{z}{v}=1
$$

we obtain $x=w$. Likewise, we have $y=v$, and so $x=y=z=u=v=$ w, that is, P is the centroid of triangle $A B C$ and the conclusion follows. Finally, if $x=v, y=u, z=w$, then from

$$
\frac{x}{w}=\frac{x+u+z}{w+y+v}=\frac{x+y+z}{w+u+v}=1,
$$

we obtain $x=w$. Similarly, $y=v$ and P is again the centroid.
3. Find all ordered triples of primes (p, q, r) such that

$$
p\left|q^{r}+1, \quad q\right| r^{p}+1, \quad r \mid p^{q}+1
$$

Solution. Answer: $(2,5,3)$ and cyclic permutations.
We check that this is a solution:

$$
2\left|126=5^{3}+1, \quad 5\right| 10=3^{2}+1, \quad 3 \mid 33=2^{5}+1
$$

Now let p, q, r be three primes satisfying the given divisibility relations. Since q does not divide $q^{r}+1, p \neq q$, and similarly $q \neq r, r \neq p$, so p, q and r are all distinct. We now prove a lemma.

Lemma. Let p, q, r be distinct primes with $p \mid q^{r}+1$, and $p>2$. Then either $2 r \mid p-1$ or $p \mid q^{2}-1$.

Proof. Since $p \mid q^{r}+1$, we have

$$
q^{r} \equiv-1 \not \equiv 1 \quad(\bmod p), \quad \text { because } p>2
$$

but

$$
q^{2 r} \equiv(-1)^{2} \equiv 1 \quad(\bmod p)
$$

Let d be the order of $q \bmod p$; then from the above congruences, d divides $2 r$ but not r. Since r is prime, the only possibilities are $d=2$ or $d=2 r$. If $d=2 r$, then $2 r \mid p-1$ because $d \mid p-1$. If $d=2$, then $q^{2} \equiv 1(\bmod p)$ so $p \mid q^{2}-1$. This proves the lemma.

Now let's first consider the case where p, q and r are all odd. Since $p \mid q^{r}+1$, by the lemma either $2 r \mid p-1$ or $p \mid q^{2}-1$. But $2 r \mid p-1$ is
impossible because

$$
2 r \mid p-1 \Longrightarrow p \equiv 1(\bmod r) \Longrightarrow 0 \equiv p^{q}+1 \equiv 2(\bmod r)
$$

and $r>2$. So we must have $p \mid q^{2}-1=(q-1)(q+1)$. Since p is an odd prime and $q-1, q+1$ are both even, we must have

$$
p \left\lvert\, \frac{q-1}{2} \quad\right. \text { or } \quad p \left\lvert\, \frac{q+1}{2}\right.
$$

either way,

$$
p \leq \frac{q+1}{2}<q
$$

But then by a similar argument we may conclude $q<r, r<p$, a contradiction.

Thus, at least one of p, q, r must equal 2 . By a cyclic permutation we may assume that $p=2$. Now $r \mid 2^{q}+1$, so by the lemma, either $2 q \mid r-1$ or $r \mid 2^{2}-1$. But $2 q \mid r-1$ is impossible as before, because q divides $r^{2}+1=\left(r^{2}-1\right)+2$ and $q>2$. Hence, we must have $r \mid 2^{2}-1$. We conclude that $r=3$, and $q \mid r^{2}+1=10$. Because $q \neq p$, we must have $q=5$. Hence $(2,5,3)$ and its cyclic permutations are the only solutions.
4. Let \mathbb{N} denote the set of positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f(m+n) f(m-n)=f\left(m^{2}\right)
$$

for all $m, n \in \mathbb{N}$.

Solution. Function $f(n)=1$, for all $n \in \mathbb{N}$, is the only function satisfying the conditions of the problem.

Note that

$$
f(1) f(2 n-1)=f\left(n^{2}\right) \quad \text { and } \quad f(3) f(2 n-1)=f\left((n+1)^{2}\right)
$$

for $n \geq 3$. Thus

$$
\frac{f(3)}{f(1)}=\frac{f\left((n+1)^{2}\right)}{f\left(n^{2}\right)}
$$

Setting $\frac{f(3)}{f(1)}=k$ yields $f\left(n^{2}\right)=k^{n-3} f(9)$ for $n \geq 3$. Similarly, for all $h \geq 1$,

$$
\frac{f(h+2)}{f(h)}=\frac{f\left((m+1)^{2}\right)}{f\left(m^{2}\right)}
$$

for sufficiently large m and is thus also k. Hence $f(2 h)=k^{h-1} f(2)$ and $f(2 h+1)=k^{h} f(1)$.

But

$$
\frac{f(25)}{f(9)}=\frac{f(25)}{f(23)} \cdots \frac{f(11)}{f(9)}=k^{8}
$$

and

$$
\frac{f(25)}{f(9)}=\frac{f(25)}{f(16)} \cdot \frac{f(16)}{f(9)}=k^{2}
$$

so $k=1$ and $f(16)=f(9)$. This implies that $f(2 h+1)=f(1)=f(2)=$ $f(2 j)$ for all j, h, so f is constant. From the original functional equation it is then clear that $f(n)=1$ for all $n \in \mathbb{N}$.
5. Let a, b, c be real numbers in the interval $\left(0, \frac{\pi}{2}\right)$. Prove that

$$
\begin{aligned}
\frac{\sin a \sin (a-b) \sin (a-c)}{\sin (b+c)} & +\frac{\sin b \sin (b-c) \sin (b-a)}{\sin (c+a)} \\
& +\frac{\sin c \sin (c-a) \sin (c-b)}{\sin (a+b)} \geq 0
\end{aligned}
$$

Solution. By the Product-to-sum formulas and the Double-angle formulas, we have

$$
\begin{aligned}
\sin (\alpha-\beta) \sin (\alpha+\beta) & =\frac{1}{2}[\cos 2 \beta-\cos 2 \alpha] \\
& =\sin ^{2} \alpha-\sin ^{2} \beta
\end{aligned}
$$

Hence, we obtain

$$
\begin{array}{r}
\sin a \sin (a-b) \sin (a-c) \sin (a+b) \sin (a+c) \\
\quad=\sin c\left(\sin ^{2} a-\sin ^{2} b\right)\left(\sin ^{2} a-\sin ^{2} c\right)
\end{array}
$$

and its analogous forms. Therefore, it suffices to prove that
$x\left(x^{2}-y^{2}\right)\left(x^{2}-z^{2}\right)+y\left(y^{2}-z^{2}\right)\left(y^{2}-x^{2}\right)+z\left(z^{2}-x^{2}\right)\left(z^{2}-y^{2}\right) \geq 0$,
where $x=\sin a, y=\sin b$, and $z=\sin c$ (hence $x, y, z>0$). Since the last inequality is symmetric with respect to x, y, z, we may assume that $x \geq y \geq z>0$. It suffices to prove that

$$
x\left(y^{2}-x^{2}\right)\left(z^{2}-x^{2}\right)+z\left(z^{2}-x^{2}\right)\left(z^{2}-y^{2}\right) \geq y\left(z^{2}-y^{2}\right)\left(y^{2}-x^{2}\right)
$$

which is evident as

$$
x\left(y^{2}-x^{2}\right)\left(z^{2}-x^{2}\right) \geq 0
$$

and

$$
z\left(z^{2}-x^{2}\right)\left(z^{2}-y^{2}\right) \geq z\left(y^{2}-x^{2}\right)\left(z^{2}-y^{2}\right) \geq y\left(z^{2}-y^{2}\right)\left(y^{2}-x^{2}\right)
$$

Note. The key step of the proof is an instance of Schur's Inequality with $r=\frac{1}{2}$.
6. Let $\overline{A H_{1}}, \overline{B H_{2}}$, and $\overline{C H_{3}}$ be the altitudes of an acute scalene triangle $A B C$. The incircle of triangle $A B C$ is tangent to $\overline{B C}, \overline{C A}$, and $\overline{A B}$ at T_{1}, T_{2}, and T_{3}, respectively. For $k=1,2,3$, let P_{i} be the point on line $H_{i} H_{i+1}$ (where $H_{4}=H_{1}$) such that $H_{i} T_{i} P_{i}$ is an acute isosceles triangle with $H_{i} T_{i}=H_{i} P_{i}$. Prove that the circumcircles of triangles $T_{1} P_{1} T_{2}, T_{2} P_{2} T_{3}, T_{3} P_{3} T_{1}$ pass through a common point.

Note. We present three solutions. The first two are synthetic geometry approaches based on the following Lemma. The third solution calculates the exact position of the common point. In these solutions, all angles are directed modulo 180°. If reader is not familiar with the knowledge of directed angles, please refer our proofs with attached Figures. The proofs of the problem for other configurations can be developed in similar fashions.
Lemma. The circumcenters of triangles $T_{2} P_{2} T_{3}, T_{3} P_{3} T_{1}$, and $T_{1} P_{1} T_{2}$ are the incenters of triangles $\mathrm{AH}_{2} \mathrm{H}_{3}, \mathrm{BH}_{3} \mathrm{H}_{1}$, and $\mathrm{CH}_{1} \mathrm{H}_{2}$, respectively.

Proof. We prove that the circumcenter of triangle $T_{2} P_{2} T_{3}$ is the incenter of triangle $\mathrm{AH}_{2} \mathrm{H}_{3}$; the other two are analogous. It suffices to show that the perpendicular bisectors of $T_{2} T_{3}$ and $T_{2} P_{2}$ are the interior angle bisectors of $\angle H_{3} A H_{2}$ and $\angle A H_{2} H_{3}$. For the first pair, notice that

triangle $A T_{2} T_{3}$ is isosceles with $A T_{2}=A T_{3}$ by equal tangents. Also, because triangle $A B C$ is acute, T_{2} is on ray $A H_{2}$ and T_{3} is on ray $A H_{3}$. Therefore, the perpendicular bisector of $T_{2} T_{3}$ is the same as the interior angle bisector of $\angle T_{3} A T_{2}$, which is the same as the interior angle bisector of $\angle H_{3} A H_{2}$.

We prove the second pair similarly. Here, triangle $\mathrm{H}_{2} T_{2} P_{2}$ is isosceles with $H_{2} T_{2}=H_{2} P_{2}$ by assumption. Also, P_{2} is on line $H_{2} H_{3}$ and T_{2} is on line $H_{2} A$. Because quadrilateral $B H_{3} H_{2} C$ is cyclic, $\angle A H_{2} H_{3}=\angle B$ is acute. Now, $\angle T_{2} H_{2} P_{2}$ is also acute by assumption, so P_{2} is on ray $H_{2} H_{3}$ if and only if T_{2} is on ray $H_{2} A$. In other words, $\angle T_{2} H_{2} P_{2}$ either coincides with $\angle A H_{2} H_{3}$ or is the vertical angle opposite it. In either case, we see that the perpendicular bisector of $T_{2} P_{2}$ is the same as the interior angle bisector of $\angle T_{2} H_{2} P_{2}$, which is the same as the interior angle bisector of $\angle A H_{2} H_{3}$.

Let $\omega_{1}, \omega_{2}, \omega_{3}$ denote the circumcircles of triangles $T_{2} P_{2} T_{3}, T_{3} P_{3} T_{1}$, $T_{1} P_{1} T_{2}$, respectively. For $i=1,2,3$, let O_{i} be center of ω_{i}. By the Lemma, O_{1}, O_{2}, O_{3} are the incenters of triangles $A H_{2} H_{3}, B H_{3} H_{1}, C H_{1} H_{2}$, respectively. Let I, ω, and r be the incenter, incircle, and inradius of triangle $A B C$, respectively.

First Solution. (By Po-Ru Loh) We begin by showing that points O_{3}, H_{2}, T_{2}, and O_{3} lie on a cyclic. We will prove this by establishing $\angle O_{3} O_{1} H_{2}=\angle O_{3} T_{2} C=\angle O_{3} T_{2} H_{2}$. To find $\angle O_{3} O_{1} H_{2}$, observe that triangles $\mathrm{H}_{2} \mathrm{AH}_{3}$ and $\mathrm{H}_{2} \mathrm{H}_{1} \mathrm{C}$ are similar. Indeed, quadrilateral $\mathrm{BH}_{3} \mathrm{H}_{2} \mathrm{C}$

is cyclic so $\angle H_{2} H_{3} A=\angle C$, and likewise $\angle C H_{1} H_{2}=\angle A$. Now, O_{1} and O_{3} are corresponding incenters of similar triangles, so it follows that triangles $\mathrm{H}_{2} \mathrm{AO}_{1}$ and $\mathrm{H}_{2} \mathrm{H}_{1} \mathrm{O}_{3}$ are also similar, and hence are related by a spiral similarity about H_{2}. Thus,

$$
\frac{A H_{2}}{H_{1} H_{2}}=\frac{O_{1} H_{2}}{O_{3} H_{2}}
$$

and

$$
\begin{aligned}
\angle A H_{2} H_{1} & =\angle A H_{2} O_{1}+\angle O_{1} H_{2} H_{1} \\
& =\angle O_{1} H_{2} H_{1}+\angle H_{1} H_{2} O_{3}=\angle O_{1} H_{2} O_{3}
\end{aligned}
$$

It follows that another spiral similarity about H_{2} takes triangle $H_{2} A H_{1}$ to triangle $H_{2} O_{1} O_{3}$. Hence $\angle O_{3} O_{1} H_{2}=\angle H_{1} A H_{2}=90^{\circ}-\angle C$.

We wish to show that $\angle O_{3} T_{2} C=90^{\circ}-\angle C$ as well, or in other words, $T_{2} O_{3} \perp B C$. To do this, drop the altitude from O_{3} to $B C$ and let it intersect $B C$ at D. Triangles $A B C$ and $H_{1} H_{2} C$ are similar as before, with corresponding incenters I and O_{3}. Furthermore, $I T_{2}$ and $O_{3} D$ also correspond. Hence, $C T_{2} / T_{2} A=C D / D H_{1}$, and so $T_{2} D \| A H_{1}$. Thus, $T_{2} D \perp B C$, and it follows that $T_{2} O_{3} \perp B C$.

Having shown that $O_{1} H_{2} T_{2} O_{3}$ is cyclic, we may now write $\angle O_{1} T_{2} O_{3}=$ $\angle O_{1} H_{2} O_{3}$. Since triangles $H_{2} A_{1}$ and $H_{2} H_{1} O_{3}$ are related by a spiral similarity about H_{2}, we have

$$
\angle O_{1} H_{2} O_{3}=\angle A H_{2} H_{1}=180^{\circ}-\angle B,
$$

by noting that $A B H_{2} H_{1}$ is cyclic. Likewise,

$$
\angle O_{2} T_{3} O_{1}=180^{\circ}-\angle C \text { and } \angle O_{3} T_{1} O_{2}=180^{\circ}-\angle A,
$$

and so $\angle O_{1} T_{2} O_{3}+\angle O_{2} T_{3} O_{1}+\angle O_{3} T_{1} O_{2}=360^{\circ}$. Therefore, $\angle T_{3} O_{1} T_{2}$, $\angle T_{1} O_{2} T_{3}$, and $\angle T_{2} O_{3} T_{1}$ of hexagon $O_{1} T_{2} O_{3} T_{1} O_{2} T_{3}$ also sum to 360°. Now let H be the intersection of circles ω_{1} and ω_{2}. Then $\angle T_{2} H T_{3}=$ $180^{\circ}-\frac{1}{2} \angle T_{3} O_{1} T_{2}$ and $\angle T_{3} H T_{1}=180^{\circ}-\frac{1}{2} \angle T_{1} O_{2} T_{3}$. Therefore,

$$
\begin{aligned}
\angle T_{1} H T_{2} & =360^{\circ}-\angle T_{2} H T_{3}-\angle T_{3} H T_{1} \\
& =\frac{1}{2} \angle T_{3} O_{1} T_{2}+\frac{1}{2} \angle T_{1} O_{2} T_{3}=180^{\circ}-\frac{1}{2} \angle T_{1} O_{3} T_{2},
\end{aligned}
$$

and so H lies on the circle ω_{3} as well. Hence, circles ω_{1}, ω_{2}, and ω_{3} share a common point, as wanted.

Note. Readers might be nervous about the configurations, i.e., what if the hexagon $O_{1} T_{2} O_{3} T_{1} O_{2} T_{3}$ is not convex? Indeed, it is convex. It suffices to show that O_{1}, O_{2}, and O_{3} are inside triangles $A T_{2} T_{3}, B T_{3} T_{1}$, and $C T_{1} T_{2}$, respectively. By symmetry, we only show that O_{1} is inside $A T_{2} T_{3}$. Let d denote the distance from A to line $T_{2} T_{3}$. Then

$$
\frac{d}{A I}=\frac{d}{A T_{2}} \cdot \frac{A T_{2}}{A I}=\cos ^{2} \frac{\angle A}{2} .
$$

On the other hand, triangles $\mathrm{AH}_{2} \mathrm{H}_{3}$ and ABC are similar with ratio $\cos \angle A$. Hence

$$
\frac{A O_{1}}{A I}=\cos \angle A=2 \cos ^{2} \frac{\angle A}{2}-1 \leq \cos ^{2} \frac{\angle A}{2}=\frac{d}{A I},
$$

by the Double-angle formulas. We conclude that O_{1} is inside triangle $A T_{2} T_{3}$. Our second proof is based on above arguments.

Second Solution. (By Anders Kaseorg) Note that $A H_{2}=A B \cos \angle A$ and $A H_{3}=A C \cos \angle A$, so triangles $A H_{2} H_{3}$ and $A B C$ are similar with ratio $\cos \angle A$. Thus, since O_{1} is the incircle of triangle $A H_{2} H_{3}$, $A O_{1}=A I \cos \angle A$. If X_{1} is the intersection of segments $A I$ and $T_{2} T_{3}$,

we have $\angle I X_{1} T_{2}=\angle A T_{2} I=90^{\circ}$, and so

$$
\begin{aligned}
X_{1} I & =T_{2} I \cos \angle T_{2} I A=A I \cos ^{2} \angle T_{2} I A=A I \sin ^{2} \frac{\angle A}{2} \\
& =A I \cdot \frac{1-\cos \angle A}{2}=\frac{A I-A O_{1}}{2}=\frac{O_{1} I}{2} .
\end{aligned}
$$

Hence $O_{1} X_{1}=X_{1} I$, so O_{1} is the reflection of I across line $T_{2} T_{3}$, and $O_{1} T_{2}=I T_{2}=I T_{3}=O_{1} T_{3}$. Therefore, $O_{1} T_{2} I T_{3}$, and similarly $O_{2} T_{3} I T_{1}$ and $O_{3} T_{1} I T_{2}$, are rhombi with the same side length r, implying that circles $\omega_{1}, \omega_{2}, \omega$ have the same radius r. We also conclude that $O_{1} T_{2}=T_{3} I=O_{2} T_{1}$ and $O_{1} T_{2}\left\|T_{3} I\right\| O_{2} T_{1}$, and so $O_{1} O_{2} T_{1} T_{2}$ is a parallelogram. Hence the midpoints of $O_{1} T_{1}$ and $O_{2} T_{2}$ (similarly $O_{3} T_{3}$) are the same point P, and $O_{1} O_{2} O_{3}$ is the reflection of $T_{1} T_{2} T_{3}$ across P. If H is the reflection of I across P, we have $O_{1} H=O_{2} H=O_{3} H=r$, that is, H is a common point of the three circumcircles.

Note. Tony Zhang suggested the following finish. Because O_{1} is the reflection of I across line $T_{2} T_{3}$ and I is the circumcenter of triangle $T_{1} T_{2} T_{3}, \angle T_{3} O_{1} T_{2}=\angle T_{2} I T_{3}=2 \angle T_{2} T_{1} T_{3}$. If H^{\prime} is the orthocenter of triangle $T_{1} T_{2} T_{3}$, then

$$
\angle T_{2} H^{\prime} T_{3}=180^{\circ}-\angle T_{2} T_{1} T_{3}=180^{\circ}-\frac{\angle T_{3} O_{1} T_{2}}{2}
$$

and so H^{\prime} lies on ω_{1}. Similarly, H^{\prime} lies on ω_{2} and ω_{3}.

Third Solution. We use directed lengths (along line $B C$, with C to B as the positive direction) and directed angles modulo 180° in this proof. (For segments not lying on line $B C$, we assume its direction as the direction of its projection on line $B C$.) We claim that $\omega_{i}, i=1,2,3$, all pass through H, the orthocenter of triangle $T_{1} T_{2} T_{3}$. Without loss of generality, it suffices to prove that $T_{1} P_{1} T_{2} H$ is cyclic. If $A B=A C$, then $T_{1}=H_{1}=P_{1}$ and the case is trivial. Let $A B=c, B C=a, C A=b, \angle B A C=\alpha$, $\angle C B A=\beta$, and $\angle A C B=\gamma$.

Let Q be the intersection of lines $H P_{1}$ and $B C$. Note that

$$
\begin{aligned}
\angle H T_{2} T_{1} & =90^{\circ}-\angle T_{2} T_{1} T_{3} \\
& =90^{\circ}-\left[180^{\circ}-\angle T_{3} T_{1} B-\angle C T_{1} T_{2}\right] \\
& =90^{\circ}-\left[180^{\circ}-\left(90^{\circ}-\frac{\beta}{2}\right)-\left(90^{\circ}-\frac{C}{2}\right)\right] \\
& =\frac{\alpha}{2} .
\end{aligned}
$$

(Likewise, $\angle T_{2} T_{1} H=\beta / 2$.) Thus to prove that $T_{1} P_{1} T_{2} H$ is cyclic is equivalent to prove that $\angle Q P_{1} T_{1}=\alpha / 2$.

Let Q_{H} and Q_{P} be the respective feet of perpendiculars from H and P_{1} to line $B C$. Because $\angle A H_{1} B=\angle A H_{2} B=90^{\circ}, A B H_{1} H_{2}$ is cyclic, and so $\angle T_{1} H_{1} P_{1}=\angle B H_{1} P_{1}=\alpha$. Thus triangles $A T_{3} T_{2}$ and $H_{1} T_{1} P_{1}$
are similar, implying that

$$
\angle Q_{P} P_{1} T_{1}=90^{\circ}-\angle P_{1} T_{1} H_{1}=90^{\circ}-\left(90^{\circ}-\frac{\angle T_{1} H_{1} P_{1}}{2}\right)=\frac{\alpha}{2}
$$

Therefore, to prove that $\angle Q P_{1} T_{1}=\alpha / 2$, we have now reduced to proving that $Q_{P}=Q_{H}$, or

$$
\begin{equation*}
\frac{T_{1} Q_{P}}{T_{1} H_{1}}=\frac{T_{1} Q_{H}}{T_{1} H_{1}} \tag{1}
\end{equation*}
$$

Note that

$$
T_{1} H_{1}=P_{1} H_{1} \quad \text { and } \quad \frac{T_{1} Q_{P}}{T_{1} H_{1}}=1-\frac{Q_{P} H_{1}}{T_{1} H_{1}}
$$

that is,

$$
\begin{equation*}
\frac{T_{1} Q_{P}}{T_{1} H_{1}}=1-\frac{Q_{P} H_{1}}{P_{1} H_{1}}=1-\cos \angle T_{1} H_{1} P_{1}=1-\cos \alpha \tag{2}
\end{equation*}
$$

On the other hand, applying the Law of Cosines to triangle $A B C$ gives

$$
\begin{aligned}
T_{1} H_{1} & =T_{1} C-H_{1} C=\frac{a+b-c}{2}-b \cos \gamma \\
& =\frac{a+b-c}{2}-\frac{a^{2}+b^{2}-c^{2}}{2 a}=\frac{a(b-c)-\left(b^{2}-c^{2}\right)}{2 a}
\end{aligned}
$$

or

$$
\begin{equation*}
T_{1} H_{1}=\frac{(b-c)(a-b-c)}{2 a}=\frac{(c-b)(b+c-a)}{2 a} \tag{3}
\end{equation*}
$$

Now we calculate $T_{1} Q_{H}$. Because H is the orthocenter of triangle $T_{1} T_{2} T_{3}$,

$$
\begin{aligned}
\angle T_{1} H T_{2} & =180^{\circ}-\angle H T_{2} T_{1}-\angle T_{2} T_{1} H \\
& =\left(90^{\circ}-\angle H T_{2} T_{1}\right)+\left(90^{\circ}-\angle T_{2} T_{1} H\right) \\
& =\angle T_{2} T_{1} T_{3}+\angle T_{3} T_{2} T_{1}=180^{\circ}-\angle T_{1} T_{3} T_{2}
\end{aligned}
$$

Applying the Law of Sines to triangle $T_{1} T_{2} H$ and applying the Extended Law of Sines to triangle $T_{1} T_{2} T_{3}$ gives

$$
\frac{T_{1} H}{\sin \angle H T_{2} T_{1}}=\frac{T_{1} T_{2}}{\sin \angle T_{1} H T_{2}}=\frac{T_{1} T_{2}}{\sin \angle T_{1} T_{3} T_{2}}=2 r
$$

and consequently,

$$
T_{1} H=2 r \sin \angle H T_{2} T_{1}=2 r \sin \frac{\alpha}{2}
$$

Because

$$
\begin{aligned}
\angle Q_{H} T_{1} H & =\angle C T_{1} T_{2}+\angle T_{2} T_{1} H=\left(90^{\circ}-\frac{\gamma}{2}\right)+\frac{\beta}{2} \\
& =90^{\circ}+\frac{\beta-\gamma}{2}
\end{aligned}
$$

we obtain

$$
\begin{equation*}
T_{1} Q_{H}=T_{1} H \cos \angle H T_{1} Q_{H}=2 r \sin \frac{\alpha}{2} \sin \frac{\gamma-\beta}{2} \tag{4}
\end{equation*}
$$

Combining equations (1), (2), (3), and (4), we conclude that it suffices to prove that

$$
\begin{equation*}
1-\cos \alpha=\frac{4 a r \sin \frac{\alpha}{2} \sin \frac{\gamma-\beta}{2}}{(c-b)(b+c-a)} \tag{5}
\end{equation*}
$$

Applying the fact

$$
\frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}=\tan \frac{\alpha}{2}=\frac{r}{A T_{2}}=\frac{2 r}{b+c-a}
$$

and applying the Law of Sines to triangle $A B C$, (5) becomes

$$
\begin{equation*}
1-\cos \alpha=\frac{2 \sin \alpha \sin ^{2} \frac{\alpha}{2} \sin \frac{\gamma-\beta}{2}}{\cos \frac{\alpha}{2}(\sin \gamma-\sin \beta)} \tag{6}
\end{equation*}
$$

By the Double-angle formulas, $1-\cos \alpha=2 \sin ^{2} \frac{\alpha}{2}$ and $\sin \alpha=$ $2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}$ and so (6) reads

$$
\sin \gamma-\sin \beta=2 \sin \frac{\alpha}{2} \sin \frac{\gamma-\beta}{2}
$$

By the Difference-to-product formulas, the last equation reduces to

$$
2 \cos \frac{\beta+\gamma}{2} \sin \frac{\gamma-\beta}{2}=2 \sin \frac{\alpha}{2} \sin \frac{\gamma-\beta}{2}
$$

which is evident.

3 IMO

1. Let A be a 101 -element subset of the set $S=\{1,2, \ldots, 1000000\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\} \quad j=1,2, \ldots, 100
$$

are pairwise disjoint.
Note. The size $|S|=10^{6}$ is unnecessarily large. See the second solution for a proof of the following stronger statement:

If A is a k-element subset of $S=\{1,2, \ldots, n\}$ and m is a positive integer such that $n>(m-1)\left(\binom{k}{2}+1\right)$, then there exists $t_{1}, t_{2}, \ldots, t_{m}$ in S such that the sets $A_{j}=\left\{x+t_{j} \mid x \in A\right\}$, $j=1,2, \ldots, m$ are pairwise disjoint.
During the jury meeting, people decided to use the easier version as the first problem on the contest.

First Solution. Consider the set $D=\{x-y \mid x, y \in A\}$. There are at most $101 \times 100+1=10101$ elements in D (where the summand 1 represents the difference $x-y=0$ for $x=y$). Two sets A_{i} and A_{j} have nonempty intersection if and only if $t_{i}-t_{j}$ is in D. It suffices to choose 100 numbers $t_{1}, t_{2}, \ldots, t_{100}$ in such a way that we do not obtain a difference from D.

We select these elements by induction. Choose one element arbitrarily. Assume that k elements, $k \leq 99$, have already been chosen. An element x that is already chosen prevents us from selecting any element from the set $x+D=\{x+d \mid d \in D\}$. Thus, after k elements are chosen, at most $10101 k \leq 999999$ elements are forbidden. Hence we can select one more element. (Note that the numbers chosen are distinct because 0 is an element in D.)

Second Solution. (By Anders Kaseorg) We construct the set $\left\{t_{j}\right\}$ one element at a time using the following algorithm: Let $t_{1}=1 \in A$. For each $j, 1 \leq j \leq 100$, let t_{j} be the smallest number in S that has not yet been crossed out, and then cross out t_{j} and all numbers of the form $t_{j}+|x-y|$ (with $x, y \in A, x \neq y$) that are in S. At each step, we cross out at most $1+\binom{101}{2}=5051$ new numbers. After picking t_{1} through t_{99}, we have crossed out at most 500049 numbers, so there are always numbers in S that have not been crossed, so there are always candidates for t_{j} in S. (In fact, we will never need to pick a t_{j} bigger than 500050 .)

Now, suppose A_{j} and A_{k} are not disjoint for some $1 \leq j<k \leq 100$. Then $x+t_{j}=y+t_{k}$ for some x, y in A. Since we cross out t_{j} immediately after picking it, $t_{k} \neq t_{j}$. Also, if $t_{k}<t_{j}$, we would have picked it on step j rather than step k (because $j<k$). Thus $t_{k}>t_{j}$, and so $x>y$. But this means that $t_{k}=t_{j}+x-y=t_{j}+|x-y|$, so t_{k} would have been crossed out on step j. This is a contradiction, so all sets A_{j} are pairwise disjoint.
2. Determine all pairs of positive integers (a, b) such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.
Note. The answers are

$$
(a, b)=(2 t, 1) \quad \text { or } \quad(t, 2 t) \quad \text { or } \quad\left(8 t^{4}-t, 2 t\right)
$$

for all positive integers t. It is routine to check the above are indeed solutions of the problem. We prove they are the only possible solutions. Assume that $a^{2} /\left(2 a b^{2}-b^{3}+1\right)=k$, where k is a positive integer. Then we have

$$
\begin{equation*}
a^{2}=2 a b^{2} k-b^{3} k+k \tag{*}
\end{equation*}
$$

We present three approaches.

First Solution. (Based on work by Anders Kaseorg) Rewrite equation $(*)$ as $a^{2}-2 a b^{2} k=-b^{3} k+k$. Adding $b^{4} k^{2}$ to both sides completes the square on the left-hand side and gives

$$
\left(k b^{2}-a\right)^{2}=b^{4} k^{2}-b^{3} k+k
$$

or

$$
\left(2 k b^{2}-2 a\right)^{2}=\left(2 b^{2} k\right)^{2}-2 b\left(2 b^{2} k\right)+4 k
$$

Completing the square on the right-hand side gives

$$
\left(2 k b^{2}-2 a\right)^{2}=\left(2 b^{2} k-b\right)^{2}+4 k-b^{2}
$$

or,

$$
y^{2}-x^{2}=4 k-b^{2}
$$

where $x=2 k b^{2}-b$ and $y=2 k b^{2}-2 a$.
If $4 k=b^{2}$, then either $x=y$ or $x=-y$. In the former case, $b=2 a$; in the latter case, $4 k b^{2}-b=2 a$, that is, $b^{4}-b=2 a$. Because $k=b^{2} / 4$
is an integer if and only if b is even, we get the solutions

$$
\left(\frac{b}{2}, b\right) \quad \text { and } \quad\left(\frac{b^{4}-b}{2}, b\right)
$$

for any even b; that is, $(a, b)=(t, 2 t)$ and $(a, b)=\left(8 t^{4}-t, 2 t\right)$ for all positive integers t.

If $4 k<b^{2}$, then $y^{2}<x^{2}$, so $y^{2} \leq(x-1)^{2}$ (since x is clearly positive). Thus,

$$
4 k-b^{2} \leq(x-1)^{2}-x^{2}=-2 x+1=-4 k b^{2}+2 b+1
$$

or, $4 k\left(b^{2}+1\right) \leq b^{2}+2 b+1<3 b^{2}+1$. Because $4 k>3$, this is a contradiction.

Similarly, if $4 k>b^{2}$, then $y^{2}>x^{2}$, so $y^{2} \geq(x+1)^{2}$. Thus,

$$
4 k-b^{2} \geq(x+1)^{2}-x^{2}=2 x+1=4 k b^{2}-2 b+1
$$

or $4 k\left(b^{2}-1\right)+(b-1)^{2} \leq 0$. We must have $b=1$ and

$$
k=\frac{a^{2}}{2 a-1+1}=\frac{a}{2} .
$$

This is an integer whenever a is even, so we get the solutions $(a, b)=$ $(2 t, 1)$ for all positive integers t.

Second Solution. (Based on work by Po-Ru Loh) Assume that $b=1$. Then

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}=\frac{a^{2}}{2 a}=\frac{a}{2}
$$

is an positive integer if and only if a is even. Thus, $(a, b)=(2 t, 1)$ are solutions of the problem for all positive integers t.

Now we assume that $b>1$. Viewing equation $(*)$ as a quadratic in a, replace a by x to consider the equation

$$
x^{2}-2 b^{2} k x+\left(b^{3}-1\right) k=0
$$

for fixed positive integers b and k. Its roots are

$$
x=\frac{2 b^{2} k \pm \sqrt{4 b^{4} k^{2}-4 b^{3} k+4 k}}{2}=b^{2} k \pm \sqrt{b^{4} k^{2}-b^{3} k+k}
$$

Assume that $x_{1}=a$ is an integer root of equation $\left(*^{\prime}\right)$. Then $b^{4} k^{2}-b^{3} k+k$ must be a perfect square. We claim that

$$
\left(b^{2} k-\frac{b}{2}-\frac{1}{2}\right)^{2}<b^{4} k^{2}-b^{3} k+k<\left(b^{2} k-\frac{b}{2}+\frac{1}{2}\right)^{2}
$$

Note first that

$$
\begin{aligned}
\left(b^{2} k-\frac{b}{2}-\frac{1}{2}\right)^{2} & =b^{4} k^{2}-2 b^{2} k\left(\frac{b}{2}+\frac{1}{2}\right)^{2}+\frac{1}{4}(b+1)^{2} \\
& =b^{4} k^{2}-b^{3} k-b^{2} k+\frac{1}{4}(b+1)^{2}
\end{aligned}
$$

To establish the first inequality in our claim, it suffices to show that

$$
-b^{2} k+\frac{1}{4}(b+1)^{2}<k
$$

or, $(b+1)^{2}<4\left(b^{2}+1\right) k$, which is evident as $(b+1)^{2}<2\left(b^{2}+1\right)$ and $k \geq 1$.

Note also that

$$
\begin{aligned}
\left(b^{2} k-\frac{b}{2}+1\right)^{2} & =b^{4} k^{2}+2 b^{2} k\left(\frac{1}{2}-\frac{b}{2}\right)+\frac{1}{4}(1-b)^{2} \\
& >b^{4} k^{2}-b^{3} k+b^{2} k \\
& >b^{4} k^{2}-b^{3} k+k, \quad \text { as } b>1
\end{aligned}
$$

which establishes the second inequality in our claim.
Because all of b, k, and $\sqrt{b^{4} k^{2}-b^{3} k+k}$ are positive integers, we conclude from our claim that $b^{2} k-\frac{b}{2}$ is an integer and that

$$
b^{4} k^{2}-b^{3} k+k=\left(b^{2} k-\frac{b}{2}\right)^{2}=b^{4} k-b^{3} k+\frac{b^{2}}{4}
$$

and so $k=b^{2} / 4$. Thus, $b=2 t$ for some positive integer t. The two solution of the equation $\left(*^{\prime}\right)$ becomes

$$
x=b^{2} k \pm\left(b^{2} k-\frac{b}{2}\right)
$$

that is. $x=t$ or $x=8 t^{4}-t$. Hence, $(a, b)=(t, 2 t)$ and $(a, b)=$ $\left(8 t^{4}-t, 2 t\right)$ are the possible solutions of the problem, in addition to the solutions $(2 t, 1)$.

Third Solution. Because both k and a^{2} are positive, $2 a b^{2}-b^{3}+1>0$, or,

$$
2 a>b-\frac{1}{b^{2}}
$$

Because a and b are positive integers, we have $2 a \geq b$. Because k is a positive integer, $a^{2} \geq 2 a b^{2}-b^{3}+1$, or, $a^{2} \geq b^{2}(2 a-b)+1$. Because
$2 a-b \geq 0$ and $a^{2}>b^{2}(2 a-b) \geq 0$, we have

$$
a>b \quad \text { or } \quad 2 a=b
$$

We consider again the quadratic equation $\left(*^{\prime}\right)$ for fixed positive integers b and k, and assume that $x_{1}=a$ is an integer root of equation $\left(*^{\prime}\right)$. Then the other root x_{2} is also an integer because $x_{1}+x_{2}=2 b^{2} k$. Without loss of generality, we assume that $x_{1} \geq x_{2}$. Then $x_{1} \geq b^{2} k>0$. Furthermore, because $x_{1} x_{2}=\left(b^{3}-1\right) k$, we obtain

$$
0 \leq x_{2}=\frac{\left(b^{3}-1\right) k}{x_{1}} \leq \frac{\left(b^{3}-1\right) k}{b^{2} k}<b
$$

If $x_{2}=0$, then $b^{3}-1=0$, and so $x_{1}=2 k$ and (a, b) can be written in the form of $(2 t, 1)$ for some integers t.

If $x_{2}>0$, then $(a, b)=\left(x_{2}, b\right)$ is a pair of positive integers satisfying the equations (\dagger) and $(*)$. We conclude that $2 x_{2}=b$, and so

$$
k=\frac{x_{2}^{2}}{2 x_{2} b^{2}-b^{3}+1}=x_{2}^{2}=\frac{b^{2}}{4}
$$

and $x_{1}=b^{4} / 2-b / 2$. Thus, (a, b) can be written in the form of either $(t, 2 t)$ or $\left(8 t^{3}-t, 2 t\right)$ for some positive integers t.
3. A convex hexagon is given in which any two opposite sides have the following property: the distance between their midpoints is $\sqrt{3} / 2$ times the sum of their lengths. Prove that all the angles of the hexagon are equal.
(A convex $A B C D E F$ has three pairs of opposite sides: $A B$ and $D E$, $B C$ and $E F, C D$ and $F A$.)

Note. We present three solutions. The first two apply vector calculations, while the last two are more synthetic. The solutions investigate the angles formed by the three main diagonals. All solutions are based on the following closely related geometric facts.

Lemma 1a. Let $P Q R S$ be a parallelogram. If $P R \geq \sqrt{3} Q S$, then $\angle S P Q \leq 60^{\circ}$ with equality if and only $P Q R S$ is a rhombus.

Proof. Let $P Q=x, Q R=P S=y, \angle S P Q=\alpha$. Then $\angle P Q R=$ $180^{\circ}-\alpha$. Applying the Law of Cosines to triangles $P Q R$ and $P Q S$ gives

$$
P R^{2}=x^{2}+y^{2}-2 x y \cos \angle P Q R=x^{2}+y^{2}+2 x y \cos \alpha
$$

and $Q S^{2}=x^{2}+y^{2}-2 x y \cos \alpha$. The condition $P R \geq \sqrt{3} Q S$ becomes

$$
x^{2}+y^{2}+2 x y \cos \alpha \geq 3\left(x^{2}+y^{2}-2 x y \cos \alpha\right),
$$

or,

$$
4 x y \cos \alpha \geq x^{2}+y^{2}
$$

Because $x^{2}+y^{2} \geq 2 x y$, we conclude that $\cos \alpha \geq \frac{1}{2}$, that is, $\alpha \leq 60^{\circ}$. Equality holds if and only if $x=y$, that is, $P Q R S$ is a rhombus.

If we only look at half of the parallelogram-triangle $P Q S$-then Lemma 1a leads to the following.

Lemma 1b. In triangle $P Q S$, let M be the midpoint of side $Q S$. If $2 P M \geq \sqrt{3} Q S$, then $\angle S P Q \leq 60^{\circ}$. Equality holds if and only $P Q S$ is equilateral.

We can also rewrite Lemma 1a in the language of vectors as the following.

Lemma 1c. Let \mathbf{v} and \mathbf{u} be two vectors in the plane. If

$$
|\mathbf{u}+\mathbf{v}| \geq \sqrt{3}(|\mathbf{u}-\mathbf{v}|)
$$

then the angle formed by \mathbf{u} and \mathbf{v} is no greater than 60°, and equality holds if and only if $|\mathbf{u}|=|\mathbf{v}|$.

Let X, Y, Z be the intersections of the diagonals of the quadrilateral $A B C D E F$, as shown. All of the solutions use the following lemma.

Lemma 2. Let $A B C D E F$ be a convex hexagon with parallel opposite sides, that is, $A B\|D E, B C\| E F$, and $C D \| F A$. Assume that each pair of three diagonals $A D, B E, C F$ form a 60° angle and that $A D=B E=C F$. Then the hexagon is equal angular. Furthermore, the hexagon can be obtained by cutting three congruent triangles from each corner of a equilateral triangle.

Proof. Because $A B \| D E$, triangles $X A B$ and $X D E$ are similar. This implies that $X A-X B$ and $X D-X E$ have the same sign. But since $A D=E B$, we also have $X A-X B=-(X D-X E)$. Thus $X A=X B$

and $X D=X E$. Because $\angle A X B=60^{\circ}$, triangle $X A B$ is equilateral, so $\angle A B E=60^{\circ}$. In the same way we can show that $\angle E B C=60^{\circ}$. Thus $\angle A B C=120^{\circ}$. Similarly all the other angles of the hexagon measure 120°.

Let $X^{\prime}, Y^{\prime}, Z^{\prime}$ be the intersections of lines $B C, D E$, and $F A$. It is not difficult to see that triangles $A D Z^{\prime}, \angle B E Y^{\prime}$, and $C F X^{\prime}$ are congruent equilateral triangles, and consequently, the hexagon is obtained by cutting congruent equilateral triangles $X^{\prime} A B, Y^{\prime} C D$, and $Z^{\prime} E F$ from equilateral triangle $X^{\prime} Y^{\prime} Z^{\prime}$. This completes our proof.

First Solution. (Based on work by Anders Kaseorg) Choose an arbitrary point O as the origin. Let each lowercase letter denote the vector from O to the point labeled with the corresponding uppercase letter. We are given:

$$
\left|\frac{a+b}{2}-\frac{d+e}{2}\right|=\frac{\sqrt{3}}{2}(|b-a|+|d-e|) .
$$

Thus, by the Triangle Inequality, we have

$$
\begin{aligned}
|(b-e)+(a-d)| & =|a+b-d-e| \\
& =\sqrt{3}(|b-a|+|d-e|) \\
& \geq \sqrt{3}|b-a+d-e| \\
& =\sqrt{3}|(b-e)-(a-d)|
\end{aligned}
$$

and inequality holds if and only if vectors $b-a$ and $d-e$ are differ by a positive scale multiple. In other words,

$$
|\overrightarrow{E B}+\overrightarrow{D A}| \geq \sqrt{3}|\overrightarrow{E B}-\overrightarrow{D A}|
$$

and equality holds if and only if $\overrightarrow{A B}=k \overrightarrow{E D}$ for some real number $k>0$. By Lemma 1c, we conclude that $\angle Z X Y=\angle A X B \leq 60^{\circ}$.

Analogously, we can show that $\angle X Y Z, \angle Y Z X \leq 60^{\circ}$. But this can only happen if all of these angles measure 60°. Hence all the equalities hold in the above discussions. Therefore, by Lemma 1c, each pair of diagonals $A D, B E$, and $C F$ form a 60° angle and $A D=C F=E B$. Because $\overrightarrow{A B}=k \stackrel{\rightharpoonup}{E D}$ for some real number $k>0, A B \| E D$, Likewise, $B C \| D F$ and $C D \| F A$. The desired result now follows from Lemma 2.

Note. The step rearranging $|a+b-d-e|$ as $|(b-e)+(a-d)|$ seems rather tricky. The following approach reveals the importance of vectors $a-d, b-e$, and $c-f$. Again by the Triangular Inequality, we have

$$
|a+b-d-e| \geq \sqrt{3}|a-b+e-d|
$$

or,

$$
(a+b-d-e) \cdot(a+b-d-e) \geq 3(a-b+e-d) \cdot(a-b+e-d)
$$

where • represents the Dot Product of vectors. Expanding the above equation and collecting the likely terms gives
$a \cdot a+b \cdot b+d \cdot d+e \cdot e-4 a \cdot b-4 \cdot e+4 a \cdot e+4 b \cdot d-2 a \cdot d-2 b \cdot e \leq 0$.
Adding the analogous results from the given conditions on other pairs of opposite sides yields

$$
\sum_{\mathrm{cyc}}(a \cdot a-2 a \cdot b+2 a \cdot c-a \cdot d) \leq 0
$$

where \sum_{cyc} is the cyclic sum of variables (a, b, c, d, e, f). Note that the left-hand side of the above inequality is
$(a-b+c-d+e-f) \cdot(a-b+c-d+e-f)=|a-b+c-d+e-f|^{2}$.
Thus, all equalities hold for all the above inequalities. In particular, $A B \|$ $D E$ and $a-b=c-d+e-f=0$, or, $c-f=-(a-b+e-d)$. We conclude that $A B\|D E\| C F$ and that $|a+b-d-e|=\sqrt{3} C F$. Because the given conditions are cyclic, it is now natural to consider the other two diagonals $A D$ and $B E$, by rewriting $a+b-d-e=(b-e)+(a-d)=\overrightarrow{E B}+\overrightarrow{D A}$.

Second Solution. (Based on work by Po-Ru Loh) Angles $A X B, C Y D$, $E Z F$ are the vertical angles of triangle $X Y Z$ (which may be degenerated to a point), so the largest of these three angles is at least 60°. Without loss of generality, assume that $\angle A X B$ is the largest angle, and so $\angle A X B=$

$\angle D X E \geq 60^{\circ}$. By Lemma 1 b , we have $2 X M \leq \sqrt{3} A B$ and $2 X N \leq$ $\sqrt{3} D E$, implying that

$$
X M+X N \leq \frac{\sqrt{3}}{2}(A B+D E)
$$

By the Triangle Inequality, we have

$$
M N \leq X M+X N \leq \frac{\sqrt{3}}{2}(A B+D E)
$$

By the given condition, all equalities hold in our discussions above. Thus, all the conditions of Lemma 2 are satisfied, from which our desired result follows.

Third Solution. (Based on the comments from Svetoslav "Beto" Savchev, member of the IMO Problem Selection Committee) We want to "add" the length of $A B$ and $D E$ without violating the midpoints constrain.

Let G and H be points such that $A M H D$ and $B M G E$ are parallelograms. Thus, $A D=M H, B E=M G, A D \| M H$, and $B E \| M G$. We conclude that $\angle A X B=\angle G M H$ and that $M G=M H$ if and only if $A D=B E$.

Because N is the midpoint of segment $D E$, it is not hard to see that $G E H D$ is also a parallelogram, and so N is the midpoint of segment $G H$. Note that $A B+E D=G E+E D+D H \geq G H$, and equality holds if and only if $A B \| D E$. In triangle $M G H$, median $M N$ is at least $\sqrt{3} / 2$ opposite side $G H$. By Lemma 1b, we conclude that $\angle G M H \geq 60^{\circ}$, that is, $\angle A X B=\angle Z X Y \geq 60^{\circ}$. Likewise, $\angle X Y Z, \angle Y Z X \geq 60^{\circ}$. Thus, all inequalities hold, implying that all the conditions of Lemma 2 hold, from which our desired follows.
4. Let $A B C D$ be a convex quadrilateral. Let P, Q and R be the feet of perpendiculars from D to lines $B C, C A$ and $A B$, respectively. Show that $P Q=Q R$ if and only if the bisectors of angles $A B C$ and $A D C$ meet on segment $A C$.

Note. The condition that $A B C D$ be cyclic is not necessary.
Solution. As usual, we set $\angle A B C=\beta, \angle B C A=\gamma$, and $\angle C A B=\alpha$. Because $\angle D P C=\angle C Q D=90^{\circ}$, quadrilateral $C P D Q$ is cyclic with $C D$ a diameter of the circumcircle. By the Extended Law of Sines, we have $P Q=C D \sin \angle P C Q=C D \sin \left(180^{\circ}-\gamma\right)=C D \sin \gamma$. Likewise, by working with cyclic quadrilateral $A R Q D$, we find $R Q=A D \sin \alpha$. Hence, $P Q=R Q$ if and only if $C D \sin \gamma=A D \sin \alpha$. Applying the Law of Sines to triangles $B A C$, we conclude that

$$
\begin{equation*}
P Q=R Q \quad \text { if and only if } \quad \frac{A B}{B C}=\frac{A D}{C D} \tag{*}
\end{equation*}
$$

On the other hand, let bisectors of $\angle C B A$ and $\angle A D C$ meet segment $A C$ at X and Y, respectively. By the Angle-bisector Theorem, we have

$$
\frac{A X}{C X}=\frac{A B}{B C} \quad \text { and } \quad \frac{A Y}{C Y}=\frac{A D}{C D}
$$

Hence, the bisectors of $\angle A B C$ and $\angle A D C$ meet on segment $A C$ if and only if $X=Y$, or,

$$
\begin{equation*}
\frac{A B}{B C}=\frac{A X}{C X}=\frac{A Y}{C Y}=\frac{A D}{C D} \tag{**}
\end{equation*}
$$

Our desired result follows from relations $(*)$ and $(* *)$.
5. Let n be a positive integer and $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers with $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$.
(a) Prove that

$$
\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}-x_{j}\right)^{2}
$$

(b) Show that the equality holds if and only if $x_{1}, x_{2}, \ldots, x_{n}$ form an arithmetic sequence.

Note. The desired inequality fits well in the format of the CauchySchwarz Inequality. Part (b) also indicates that the equality case of Cauchy-Schwarz Inequality holds if and only if $x_{i}-x_{j}=d(i-j)$, that is, $\frac{x_{i}-x_{j}}{i-j}=d$. Thus, it is natural to explore the the relation between

$$
\frac{2\left(n^{2}-1\right)}{3} \text { and } \sum_{i, j=1}^{n}(i-j)^{2}
$$

Because part (b) helps to solve this problem, people suggested removing this part during the jury meeting at the IMO. After some careful discussions, people decided to leave it as it is. In authors' view, it might be better (and certainly more difficult) to ask the question in the following way:

Let n be a positive integer and $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers with $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. Determine the smallest constant c, in terms of n, such that

$$
\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq c \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}-x_{j}\right)^{2}
$$

Solution. We adapt double sum notation

$$
\sum_{i, j=1}^{n} \text { for } \sum_{i=1}^{n} \sum_{j=1}^{n}
$$

The desired inequality reads

$$
\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2}
$$

By Cauchy-Schwarz Inequality, we have

$$
\left(\sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2}\right)\left(\sum_{i, j=1}^{n}(i-j)^{2}\right) \geq\left(\sum_{i, j=1}^{n}|i-j|\left|x_{i}-x_{j}\right|\right)^{2}
$$

It suffices to show that

$$
\sum_{i, j=1}^{n}(i-j)^{2}=\frac{n^{2}\left(n^{2}-1\right)}{6}
$$

and

$$
\left(\sum_{i, j=1}^{n}|i-j|\left|x_{i}-x_{j}\right|\right)^{2}=\frac{n^{2}}{4}\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2}
$$

or

$$
\sum_{i, j=1}^{n}|i-j|\left|x_{i}-x_{j}\right|=\frac{n}{2} \sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|
$$

Note that

$$
\begin{aligned}
\sum_{i, j=1}^{n}(i-j)^{2} & =\sum_{i, j=1}^{n}\left(i^{2}+j^{2}-2 i j\right)=\sum_{i, j=1}^{n}\left(i^{2}+j^{2}\right)-2 \sum_{i=1}^{n} \sum_{j=1}^{n} i j \\
& =2 \sum_{i, j=1}^{n} i^{2}-2\left(\sum_{i=1}^{n} i\right)\left(\sum_{j=1}^{n} j\right) \\
& =2 \sum_{i=1}^{n} \sum_{j=1}^{n} i^{2}-2\left(\frac{n(n+1)}{2}\right)^{2}=2 \sum_{i=1}^{n} n i^{2}-\frac{n^{2}(n+1)^{2}}{2} \\
& =2 n \cdot \frac{n(n+1)(2 n+1)}{6}-\frac{n^{2}(n+1)^{2}}{2} \\
& =n^{2}(n+1) \cdot \frac{2(2 n+1)-3(n+1)}{6} \\
& =n^{2}(n+1) \frac{n-1}{6}=\frac{n^{2}\left(n^{2}-1\right)}{6}
\end{aligned}
$$

establishing identity (\dagger).

To establish identity (\ddagger), we compare the coefficients of $x_{i}, 1 \leq i \leq n$, on both sides of the identity. The coefficient of x_{i} on the left-hand side is equal to

$$
\begin{aligned}
(i-1)+(i-2)+ & \cdots+[(i-(i-1)]-[(i+1)-i]-\cdots-(n-i) \\
& =\frac{i(i-1)}{2}-\frac{(n-i)(n-i+1)}{2} \\
& =\frac{i(i-1)-n^{2}+(2 i-1) n-i(i-1)}{2} \\
& =\frac{n(2 i-n-1)}{2} .
\end{aligned}
$$

On the other hand, the coefficient of x_{i} on the right-and side is equal to

$$
\frac{n}{2}[(\underbrace{1+1+\cdots+1)}_{i-1 \text { times }}-\underbrace{(1+1+\cdots+1)}_{n-i \text { times }}]=\frac{n}{2}(2 i-n-1) .
$$

Therefore, identity (\ddagger) is true and the proof of part (a) is complete.
There is only one inequality step (when we applied Cauchy-Schwarz Inequality) in our proof of the desired inequality. The equality holds if and only if the Cauchy-Schwarz Inequality reaches equality, that is,

$$
\frac{x_{i}-x_{j}}{i-j}=d
$$

is a constant for $1 \leq i, j \leq n$. In particular, $x_{i}-x_{1}=d(i-1)$, that is, $x_{1}, x_{2}, \ldots, x_{n}$ is an arithmetic sequence.
6. Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q.

Solution. We approach indirectly by assuming that such q does not exist. Then for any fixed prime q, there is a positive integer n such that $n^{p}-p$ is divisible by q, that is

$$
\begin{equation*}
n^{p} \equiv p \quad(\bmod q) \tag{*}
\end{equation*}
$$

If q divides n, then q divides p, and so $q=p$. We further assume that $q \neq p$. Hence q does not divide n. We start with the following well-known fact.

Lemma. Let q be a prime, and let n be a positive integer relatively prime to q. Denote by d_{n} the order of n modulo q, that is, d_{n} is the smallest
positive integer such that $n^{d_{n}} \equiv 1(\bmod q)$. Then for any positive integer m such that $n^{m} \equiv 1(\bmod q), d_{n}$ divides m.

Proof. By the minimality of d_{n}, we can write $m=d_{n} k+r$ where k and r are integers with $1 \leq k$ and $0 \leq r<d_{n}$. Then

$$
1 \equiv n^{m} \equiv n^{d_{n} k+r} \equiv n^{d_{n} k} \cdot n^{r}=n^{r} \quad(\bmod q)
$$

By the minimality of $d_{n}, r=0$, that is, d_{n} divides m.
By Fermat's little Theorem, $n^{q-1} \equiv 1(\bmod q)$. Thus, by the Lemma, d_{n} divides $q-1$. For the positive integer n, because $n^{p} \equiv p(\bmod q)$, we have $n^{p d_{p}} \equiv p^{d_{p}} \equiv 1(\bmod q)$. Thus, by the Lemma, d_{n} divides both $q-1$ and $p d_{p}$, implying that d_{n} divides $\operatorname{gcd}\left(q-1, p d_{p}\right)$.

Now we pick a prime q such that (a) q divides $\frac{p^{p}-1}{p-1}=1+p+\cdots+p^{p-1}$, and (b) p^{2} does not divide $q-1$. First we show that such a q does exist. Note that $1+p+\cdots+p^{p-1} \equiv 1+p \not \equiv 1\left(\bmod p^{2}\right)$. Hence there is a prime divisor of $1+p+\cdots+p^{p-1}$ that is not congruent to 1 modulo p^{2}, and we can choose that prime to be our q.

By $(\mathrm{a}), p^{p} \equiv 1(\bmod q)($ and $p \neq q)$. By the Lemma, d_{p} divides p, and so $d_{p}=p$ or $d_{p}=1$.

$$
\text { If } d_{p}=1, \text { then } p \equiv 1(\bmod q)
$$

If $d_{p}=p$, then d_{n} divides $\operatorname{gcd}\left(p^{2}, q-1\right)$. By (b), the possible values of d_{n} are 1 and p, implying that $n^{p} \equiv 1(\bmod q)$. By relation $(*)$, we conclude $p \equiv 1(\bmod q)$.

Thus, in any case, we have $p \equiv 1(\bmod q)$. But then by $(a), 0 \equiv$ $1+p+\cdots+p^{p-1} \equiv p(\bmod q)$, implying that $p=q$, which is a contradiction. Therefore our original assumption was wrong, and there is a q such that for every integer n, the number $n^{p}-p$ is not divisible by q.

Note. The proof can be shortened by starting directly with the definition of q as in the second half of the above proof. But we think the argument in the first part provides motivation for the choice of this particular q.

Many students were able to apply Fermat's Little Theorem to realize that $n^{p d_{p}} \equiv p^{d_{p}} \equiv 1(\bmod q)$. It is also not difficult to see that there are integers n such that $n^{d_{p}} \neq 1(\bmod q)$, because of the existence of primitive roots modulo q. By the minimality of d_{p}, we conclude that $d_{p}=p k$, where k is some divisor of d_{p}. Consequently, we have $p k \mid(q-1)$, implying that $q \equiv 1(\bmod p)$. This led people to think about various applications of Dirichlet's Theorem, which is an very popular but fatal approach to this problem. However, a solution with advanced mathematics
background is available. It involves a powerful prime density theorem. The prime q satisfies the required condition if and only if q remains a prime in the field $k=\mathbb{Q}(\sqrt[p]{p})$. By applying Chebotarev's density theorem to the Galois closure of k, we can show that the set of such q has density $\frac{1}{p}$, implying that there are infinitely many q satisfying the required condition. Of course, this approach is far beyond the knowledge of most IMO participants.

4

Problem Credits

USAMO

1. Titu Andreescu
2. Gregory Galperin
3. Zoran Sunik
4. Titu Andreescu and Zuming Feng
5. Titu Andreescu and Zuming Feng
6. Reid Barton

Team Selection Test

1. Zuming Feng
2. Titu Andreescu
3. Reid Barton
4. Alex Saltman
5. Titu Andreescu
6. Zuming Feng

IMO

1. Brazil
2. Bulgaria
3. Poland
4. Finland
5. Ireland
6. France

Glossary

Angle Bisector Theorem Let $A B C$ be a triangle, and let D be a point of side $B C$ such that segment $A D$ bisects $\angle B A C$. Then

$$
\frac{A B}{A C}=\frac{B D}{D C}
$$

Cauchy-Schwarz Inequality For any real numbers $a_{1}, a_{2}, \ldots, a_{n}$, and $b_{1}, b_{2}, \ldots, b_{n}$

$$
\begin{aligned}
\left(a_{1}^{2}+a_{2}^{2}\right. & \left.+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}\right) \\
& \geq\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right)^{2}
\end{aligned}
$$

with equality if and only if a_{i} and b_{i} are proportional, $i=1,2, \ldots, n$.

Ceva's theorem and its trigonometric form Let $A D, B E, C F$ be three cevians of triangle $A B C$. The following are equivalent:
(i) $A D, B E, C F$ are concurrent;
(ii) $\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1$;
(iii) $\frac{\sin \angle A B E}{\sin \angle E B C} \cdot \frac{\sin \angle B C F}{\sin \angle F C A} \cdot \frac{\sin \angle C A D}{\sin \angle D A B}=1$.

Cevian A cevian of a triangle is any segment joining a vertex to a point on the opposite side.

Cyclic Sum Let n be a positive integer. Given a function f of n variables, define the cyclic sum of variables $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as

$$
\begin{aligned}
\sum_{\text {cyc }} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)= & f\left(x_{1}, x_{2}, \ldots, x_{n}\right)+f\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right) \\
& +\cdots+f\left(x_{n}, x_{1}, x_{2}, \ldots, x_{n-1}\right)
\end{aligned}
$$

Dirichlet's Theorem A set S of primes is said to have Dirichlet density if

$$
\lim _{s \rightarrow 1} \frac{\sum_{p \in S} p^{-s}}{\ln (s-1)^{-1}}
$$

exists, where \ln denotes the natural logarithm. If the limit exists we denote it by $d(S)$ and call $d(S)$ the Dirichlet density of S.

There are infinitely many primes in any arithmetic sequence of integers for which the common difference is relatively prime to the terms. In other words, let a and m be relatively prime positive integers, then there are infinitely many primes p such that $p \equiv a(\bmod m)$. More precisely, let $S(a ; m)$ denote the set of all such primes. Then $d(S(a ; m))=1 / \phi(m)$, where ϕ is Euler's function.

Dot Product Let n be an integer greater then 1 , and let $\mathbf{u}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and $\mathbf{v}=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$ be two vectors. Define their dot product $\mathbf{u} \cdot \mathbf{v}=$ $a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}$. It is easy to check that
(i) $\mathbf{v} \cdot \mathbf{v}=|\mathbf{v}|^{2}$, that is, the dot product of vector with itself is the square of the magnitude of \mathbf{v} and $\mathbf{v} \cdot \mathbf{v} \geq 0$ with equality if and only if $\mathbf{v}=[0,0, \ldots, 0]$;
(ii) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$;
(iii) $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$, where \mathbf{w} is a vector;
(iv) $(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})$, where c is a scalar.

When vectors \mathbf{u} and \mathbf{v} are placed tail-by-tail at the origin O, let A and B be the tips of \mathbf{u} and \mathbf{v}, respectively. Then $\overrightarrow{A B}=\mathbf{v}-\mathbf{u}$. Let $\angle A O B=\theta$. Applying the Law of Cosines to triangle $A O B$ yields

$$
\begin{aligned}
|\mathbf{v}-\mathbf{u}|^{2} & =A B^{2}=O A^{2}+O B^{2}-2 O A \cdot O B \cos \theta \\
& =|\mathbf{u}|^{2}+|\mathbf{v}|^{2}-2|\mathbf{u}||\mathbf{v}| \cos \theta
\end{aligned}
$$

It follows that

$$
(\mathbf{v}-\mathbf{u}) \cdot(\mathbf{v}-\mathbf{u})=\mathbf{u} \cdot \mathbf{u}+\mathbf{v} \cdot \mathbf{v}-2|\mathbf{u} \| \mathbf{v}| \cos \theta
$$

or,

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}
$$

Consequently, if $0 \leq \theta \leq 90^{\circ}, \mathbf{u} \cdot \mathbf{v} \geq 0$. Considering the range of $\cos \theta$, we have provided a proof of the Cauchy-Schwarz Inequality.

Extended Law of Sines In a triangle $A B C$ with circumradius equal to R,

$$
\frac{B C}{\sin A}=\frac{C A}{\sin B}=\frac{A B}{\sin C}=2 R
$$

Fermat's Little Theorem If p is prime, then $a^{p} \equiv a(\bmod p)$ for all integers a.

Law of Cosines In a triangle $A B C$,

$$
C A^{2}=A B^{2}+B C^{2}-2 A B \cdot B C \cos \angle A B C
$$

and analogous equations hold for $A B^{2}$ and $B C^{2}$.
Pigeonhole Principle If n objects are distributed among $k<n$ boxes, some box contains at least two objects.

Primitive Root Let n be a positive integer. An integer a is called a primitive root modulo n if a and n are relatively prime and $\phi(n)$ is the smallest positive integer such that $a^{\phi(n)} \equiv 1(\bmod n)$. Integer n possesses primitive roots if and only if n is of the form $2,4, p^{m}, 2 p^{m}$, where p is an odd prime and m is a positive integer. If $n=p$ is a prime, then $\phi(p)=p-1$. Equivalently, an integer a is a primitive root modulo p if and only if $a, a^{2}, \ldots, a^{p-1}$ are all distinct modulo p, that is,

$$
\left\{a, a^{2}, \ldots, a^{p-1}\right\} \equiv\{1,2, \ldots p-1\} \quad(\bmod p)
$$

Schur's Inequality Let x, y, z be nonnegative real numbers. Then for any $r>0$,

$$
x^{r}(x-y)(x-z)+y^{r}(y-z)(y-x)+z^{r}(z-x)(z-y) \geq 0 .
$$

Equality holds if and only if $x=y=z$ or if two of x, y, z are equal and the third is equal to 0 .

The proof of the inequality is rather simple. Because the inequality is symmetric in the three variables, we may assume without loss of generality that $x \geq y \geq z$. Then the given inequality may be rewritten as

$$
(x-y)\left[x^{r}(x-z)-y^{r}(y-z)\right]+z^{r}(x-z)(y-z) \geq 0
$$

and every term on the left-hand side is clearly nonnegative. The first term is positive if $x>y$, so equality requires $x=y$, as well as $z^{r}(x-z)(y-z)=$ 0 , which gives either $x=y=z$ or $z=0$.

Spiral Similarity See transformation.

Transformation A transformation of the plane is a mapping of the plane onto itself such that every point P is mapped into a unique image P^{\prime} and every point Q^{\prime} has a unique prototype (preimage, inverse image, counterimage) Q.

A reflection across a line (in the plane) is a transformation which takes every point in the plane into its mirror image, with the line as mirror. A rotation is a transformation when the entire plane is rotated about a fixed point in the plane.

A similarity is a transformation that preserves ratios of distances. If P^{\prime} and Q^{\prime} are the respective images of points P and Q under a similarity T, then the ratio $P^{\prime} Q^{\prime} / P Q$ depends only on \mathbf{T}. This ratio is the similitude of \mathbf{T}. A dilation is a direction-preserving similarity, i.e., a similarity that takes each line into a parallel line.

The product $\mathbf{T}_{2} T_{1}$ of two transformations is transformation defined by $\mathbf{T}_{2} T_{1}=T_{2} \circ T_{1}$, where \circ denotes function composition. A spiral similarity is the product of a rotation and a dilation, or vice versa.

Triangle Inequality Let $z=a+b i$ be a complex number. Define the absolute value of z to be

$$
|z|=\sqrt{a^{2}+b^{2}}
$$

Let α and β be two complex numbers. The inequality

$$
|\alpha+\beta| \leq|\alpha|+|\beta|
$$

is called the triangle inequality.
Let $\alpha=\alpha_{1}+\alpha_{2} i$ and $\beta=\beta_{1}+\beta_{2} i$, where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ are real numbers. Then $\alpha+\beta=\left(\alpha_{1}+\beta_{1}\right)+\left(\alpha_{2}+\beta_{2}\right) i$. Vectors $\mathbf{u}=\left[\alpha_{1}, \alpha_{2}\right]$, $\mathbf{v}=\left[\beta_{1}, \beta_{2}\right]$, and $\mathbf{w}=\left[\alpha_{1}+\beta_{1}, \alpha_{2}+\beta_{2}\right]$ form a triangle with sides lengths $|\alpha|,|\beta|$, and $|\alpha+\beta|$. The triangle inequality restates the fact the the length of any side of a triangle is less than the sum of the lengths of the other two sides.

Trigonometric Identities

\[

\]

Addition and subtraction formulas:

$$
\begin{aligned}
& \sin (a \pm b)=\sin a \cos b \pm \cos a \sin b \\
& \cos (a \pm b)=\cos a \cos b \mp \sin a \sin b \\
& \tan (a \pm b)=\frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}
\end{aligned}
$$

Double-angle formulas:

$$
\begin{aligned}
& \sin 2 a=2 \sin a \cos a \\
& \cos 2 a=2 \cos ^{2} a-1=1-2 \sin ^{2} a=\cos ^{2} \alpha-\sin ^{2} \alpha \\
& \tan 2 a=\frac{2 \tan a}{1-\tan ^{2} a}
\end{aligned}
$$

Triple-angle formulas:

$$
\begin{aligned}
& \sin 3 a=3 \sin a-4 \sin ^{3} a=\left(3-4 \sin ^{2} a\right) \sin a=\left(4 \cos ^{2} a-1\right) \sin a \\
& \cos 3 a=4 \cos ^{3} a-3 \cos a=\left(4 \cos ^{2}-3\right) \cos a=\left(1-4 \sin ^{2} a\right) \cos a \\
& \tan 3 a=\frac{3 \tan a-\tan ^{3} a}{1-3 \tan ^{2} a}
\end{aligned}
$$

Half-angle formulas:

$$
\begin{aligned}
& \sin ^{2} \frac{a}{2}=\frac{1-\cos a}{2} \\
& \cos ^{2} \frac{a}{2}=\frac{1+\cos a}{2}
\end{aligned}
$$

Sum-to-product formulas:

$$
\begin{aligned}
\sin a+\sin b & =2 \sin \frac{a+b}{2} \cos \frac{a-b}{2} \\
\cos a+\cos b & =2 \cos \frac{a+b}{2} \cos \frac{a-b}{2} \\
\tan a+\tan b & =\frac{\sin (a+b)}{\cos a \cos b}
\end{aligned}
$$

Difference-to-product formulas:

$$
\begin{aligned}
\sin a-\sin b & =2 \sin \frac{a-b}{2} \cos \frac{a+b}{2} \\
\cos a-\cos b & =-2 \sin \frac{a-b}{2} \sin \frac{a+b}{2} \\
\tan a-\tan b & =\frac{\sin (a-b)}{\cos a \cos b}
\end{aligned}
$$

Product-to-sum formulas:

$$
\begin{aligned}
2 \sin a \cos b & =\sin (a+b)+\sin (a-b) \\
2 \cos a \cos b & =\cos (a+b)+\cos (a-b) \\
2 \sin a \sin b & =-\cos (a+b)+\cos (a-b)
\end{aligned}
$$

Weighted AM-GM Inequality If $a_{1}, a_{2}, \ldots, a_{n}$ are n nonnegative real numbers, and if $m_{1}, m_{2}, \ldots, m_{n}$ are positive real numbers satisfying

$$
m_{1}+m_{2}+\cdots+m_{n}=1
$$

then

$$
m_{1} a_{1}+m_{2} a_{2}+\cdots+m_{n} a_{n} \geq a_{1}^{m_{1}} a_{2}^{m_{2}} \cdots a_{n}^{m_{n}}
$$

with equality if and only if $a_{1}=a_{2}=\cdots=a_{n}$.

6

Further Reading

1. Andreescu, T.; Feng, Z., USA and International Mathematical Olympiads 2002, Mathematical Association of America, 2003.
2. Andreescu, T.; Feng, Z., USA and International Mathematical Olympiads 2001, Mathematical Association of America, 2002.
3. Andreescu, T.; Feng, Z., USA and International Mathematical Olympiads 2000, Mathematical Association of America, 2001.
4. Andreescu, T.; Feng, Z.; Lee, G.; Loh, P., Mathematical Olympiads: Problems and Solutions from around the World, 2001-2002, Mathematical Association of America, 2004.
5. Andreescu, T.; Feng, Z.; Lee, G., Mathematical Olympiads: Problems and Solutions from around the World, 2000-2001, Mathematical Association of America, 2003.
6. Andreescu, T.; Feng, Z., Mathematical Olympiads: Problems and Solutions from around the World, 1999-2000, Mathematical Association of America, 2002.
7. Andreescu, T.; Feng, Z., Mathematical Olympiads: Problems and Solutions from around the World, 1998-1999, Mathematical Association of America, 2000.
8. Andreescu, T.; Kedlaya, K., Mathematical Contests 1997-1998: Olympiad Problems from around the World, with Solutions, American Mathematics Competitions, 1999.
9. Andreescu, T.; Kedlaya, K., Mathematical Contests 1996-1997: Olympiad Problems from around the World, with Solutions, American Mathematics Competitions, 1998.
10. Andreescu, T.; Kedlaya, K.; Zeitz, P., Mathematical Contests 19951996: Olympiad Problems from around the World, with Solutions, American Mathematics Competitions, 1997.
11. Andreescu, T.; Feng, Z., 101 Problems in Algebra from the Training of the USA IMO Team, Australian Mathematics Trust, 2001.
12. Andreescu, T.; Feng, Z., 102 Combinatorial Problems from the Training of the USA IMO Team, Birkhäuser, 2002.
13. Andreescu, T.; Feng, Z., A Path to Combinatorics for Undergraduate Students: Counting Strategies, Birkhäuser, 2003.
14. Andreescu, T.; Enescu, B., Mathematical Olympiad Treasures, Birkhäuser, 2003.
15. Andreescu, T.; Gelca, R., Mathematical Olympiad Challenges, Birkhäuser, 2000.
16. Andreescu, T.; Andrica, D., 360 Problems for Mathematical Contests, GIL Publishing House, 2003.
17. Andreescu, T.; Andrica, D., An Introduction to Diophantine Equations, GIL Publishing House, 2002.
18. Barbeau, E., Polynomials, Springer-Verlag, 1989.
19. Beckenbach, E. F.; Bellman, R., An Introduction to Inequalities, New Mathematical Library, Vol. 3, Mathematical Association of America, 1961.
20. Bollobas, B., Graph Theory, An Introductory Course, Springer-Verlag, 1979.
21. Chinn, W. G.; Steenrod, N. E., First Concepts of Topology, New Mathematical Library, Vol. 27, Mathematical Association of America, 1966.
22. Cofman, J., What to Solve?, Oxford Science Publications, 1990.
23. Coxeter, H. S. M.; Greitzer, S. L., Geometry Revisited, New Mathematical Library, Vol. 19, Mathematical Association of America, 1967.
24. Coxeter, H. S. M., Non-Euclidean Geometry, The Mathematical Association of America, 1998.
25. Doob, M., The Canadian Mathematical Olympiad 1969-1993, University of Toronto Press, 1993.
26. Engel, A., Problem-Solving Strategies, Problem Books in Mathematics, Springer, 1998.
27. Fomin, D.; Kirichenko, A., Leningrad Mathematical Olympiads 19871991, MathPro Press, 1994.
28. Fomin, D.; Genkin, S.; Itenberg, I., Mathematical Circles, American Mathematical Society, 1996.
29. Graham, R. L.; Knuth, D. E.; Patashnik, O., Concrete Mathematics, Addison-Wesley, 1989.
30. Gillman, R., A Friendly Mathematics Competition, The Mathematical Association of America, 2003.
31. Greitzer, S. L., International Mathematical Olympiads, 1959-1977, New Mathematical Library, Vol. 27, Mathematical Association of America, 1978.
32. Grossman, I.; Magnus, W., Groups and Their Graphs, New Mathematical Library, Vol. 14, Mathematical Association of America, 1964.
33. Holton, D., Let's Solve Some Math Problems, A Canadian Mathematics Competition Publication, 1993.
34. Ireland, K.; Rosen, M., A Classical Introduction to Modern Number Theory, Springer-Verlag, 1982.
35. Kazarinoff, N. D., Geometric Inequalities, New Mathematical Library, Vol. 4, Mathematical Association of America, 1961.
36. Kedlaya, K; Poonen, B.; Vakil, R., The William Lowell Putnam Mathematical Competition 1985-2000, The Mathematical Association of America, 2002.
37. Klamkin, M., International Mathematical Olympiads, 1978-1985, New Mathematical Library, Vol. 31, Mathematical Association of America, 1986.
38. Klamkin, M., USA Mathematical Olympiads, 1972-1986, New Mathematical Library, Vol. 33, Mathematical Association of America, 1988.
39. Klee, V.; Wagon, S, Old and New Unsolved Problems in Plane Geometry and Number Theory, The Mathematical Association of America, 1991.
40. Kürschák, J., Hungarian Problem Book, volumes I \& II, New Mathematical Library, Vols. 11 \& 12, Mathematical Association of America, 1967.
41. Kuczma, M., 144 Problems of the Austrian-Polish Mathematics Competition 1978-1993, The Academic Distribution Center, 1994.
42. Kuczma, M., International Mathematical Olympiads 1986-1999, Mathematical Association of America, 2003.
43. Landau, E., Elementary Number Theory, Chelsea Publishing Company, New York, 1966.
44. Larson, L. C., Problem-Solving Through Problems, Springer-Verlag, 1983.
45. Lausch, H. The Asian Pacific Mathematics Olympiad 1989-1993, Australian Mathematics Trust, 1994.
46. Leveque, W. J., Topics in Number Theory, Volume 1, Addison Wesley, New York, 1956.
47. Liu, A., Chinese Mathematics Competitions and Olympiads 19811993, Australian Mathematics Trust, 1998.
48. Liu, A., Hungarian Problem Book III, New Mathematical Library, Vol. 42, Mathematical Association of America, 2001.
49. Lozansky, E.; Rousseau, C. Winning Solutions, Springer, 1996.
50. Mordell, L. J., Diophantine Equations, Academic Press, London and New York, 1969.
51. Ore, O., Graphs and Their Uses, New Mathematical Library, Mathematical Association of America, 1963. Revised and updated by Robin J. Wilson, New Mathematical Library, vol. 34, Mathematical Association of America, 1990.
52. Ore, O., Invitation to Number Theory, New Mathematical Library, vol. 20, Mathematical Association of America, 1967.
53. Savchev, S.; Andreescu, T. Mathematical Miniatures, Anneli Lax New Mathematical Library, Vol. 43, Mathematical Association of America, 2002.
54. Sharygin, I. F., Problems in Plane Geometry, Mir, Moscow, 1988.
55. Sharygin, I. F., Problems in Solid Geometry, Mir, Moscow, 1986.
56. Shklarsky, D. O; Chentzov, N. N; Yaglom, I. M., The USSR Olympiad Problem Book, Freeman, 1962.
57. Slinko, A., USSR Mathematical Olympiads 1989-1992, Australian Mathematics Trust, 1997.
58. Sierpinski, W., Elementary Theory of Numbers, Hafner, New York, 1964.
59. Soifer, A., Colorado Mathematical Olympiad: The first ten years, Center for excellence in mathematics education, 1994.
60. Szekely, G. J., Contests in Higher Mathematics, Springer-Verlag, 1996.
61. Stanley, R. P., Enumerative Combinatorics, Cambridge University Press, 1997.
62. Tabachnikov, S. Kvant Selecta: Algebra and Analysis I, American Mathematical Society, 1991.
63. Tabachnikov, S. Kvant Selecta: Algebra and Analysis II, American Mathematical Society, 1991.
64. Tabachnikov, S. Kvant Selecta: Combinatorics I, American Mathematical Society, 2000.
65. Taylor, P. J., Tournament of Towns 1980-1984, Australian Mathematics Trust, 1993
66. Taylor, P. J., Tournament of Towns 1984-1989, Australian Mathematics Trust, 1992.
67. Taylor, P. J., Tournament of Towns 1989-1993, Australian Mathematics Trust, 1994
68. Taylor, P. J.; Storozhev, A., Tournament of Towns 1993-1997, Australian Mathematics Trust, 1998.
69. Tomescu, I., Problems in Combinatorics and Graph Theory, Wiley, 1985.
70. Vanden Eynden, C., Elementary Number Theory, McGraw-Hill, 1987.
71. Vaderlind, P.; Guy, R.; Larson, L., The Inquisitive Problem Solver, The Mathematical Association of America, 2002.
72. Wilf, H. S., Generatingfunctionology, Academic Press, 1994.
73. Wilson, R., Introduction to graph theory, Academic Press, 1972.
74. Yaglom, I. M., Geometric Transformations, New Mathematical Library, Vol. 8, Mathematical Association of America, 1962.
75. Yaglom, I. M., Geometric Transformations II, New Mathematical Library, Vol. 21, Mathematical Association of America, 1968.
76. Yaglom, I. M., Geometric Transformations III, New Mathematical Library, Vol. 24, Mathematical Association of America, 1973.
77. Zeitz, P., The Art and Craft of Problem Solving, John Wiley \& Sons, 1999.

7

Appendix

I 2003 Olympiad Results

Tiankai Liu and Po-Ru Loh, both with perfect scores, were the winners of the Samuel Greitzer-Murray Klamkin award, given to the top scorer(s) on the USAMO. Mark Lipson placed third on the USAMO. They were awarded college scholarships of $\$ 5000, \$ 5000, \$ 2000$, respectively, by the Akamai Foundation. The Clay Mathematics Institute (CMI) award, for a solution of outstanding elegance, and carrying a $\$ 3000$ cash prize, was presented to Tiankai Liu for his solution to USAMO Problem 6. Two additional CMI awards, carrying a $\$ 1000$ cash prize each, were presented to Anders Kaseorg and Matthew Tang for their solutions to USAMO Problem 5.

The top twelve students on the 2003 USAMO were (in alphabetical order):

Boris Alexeev	Cedar Shoals High School	Athens, GA
Jae Bae	Academy of Advancement in Science and Technology	Hackensack, NJ
Daniel Kane	West High School	Madison, WI
Anders Kaseorg	Charlotte Home Educators Association	Charlotte, NC
Mark Lipson	Lexington High School	Lexington, MA
Tiankai Liu	Phillips Exeter Academy	Exeter, NH
Po-Ru Loh	James Madison Memorial High School	Madison, WI
Po-Ling Loh	James Madison Memorial High School	Madison, WI
Aaron Pixton	Vestal Senior High School	Vestal, NY

Kwokfung Tang	Phillips Exeter Academy	Exeter, NH
Tony Zhang	Phillips Exeter Academy	Exeter, NH
Yan Zhang	Thomas Jefferson High	Alexandria, VA
	School of Science and Technology	

The USA team members were chosen according to their combined performance on the 32nd annual USAMO and the Team Selection Test that took place at the Mathematical Olympiad Summer Program (MOSP) held at the University of Nebraska-Lincoln, June 15-July 5, 2003. Members of the USA team at the 2003 IMO (Tokyo, Japan) were Daniel Kane, Anders Kaseorg, Mark Lipson, Po-Ru Loh, Aaron Pixton, and Yan Zhang. Zuming Feng (Phillips Exeter Academy) and Gregory Galperin (Eastern Illinois University) served as team leader and deputy leader, respectively. The team was also accompanied by Melanie Wood (Princeton University) and Steven Dunbar (University of Nebraska-Lincoln), as the observer of the team leader and deputy leader, respectively.

At the 2003 IMO, gold medals were awarded to students scoring between 29 and 42 points, silver medals to students scoring between 19 and 28 points, and bronze medals to students scoring between 13 and 18 points. There were 37 gold medalists, 69 silver medalists, and 104 bronze medalists. There were three perfect papers (Fu from China, Le and Nguyen from Vietnam) on this very difficult exam. Loh's 36 tied for 12th place overall. The team's individual performances were as follows:

Kane	GOLD Medallist	Loh	GOLD Medallist
Kaseorg	GOLD Medallist	Pixton	GOLD Medallist
Lipson	SILVER Medallist	Y. Zhang	SILVER Medallist

In terms of total score (out of a maximum of 252), the highest ranking of the 82 participating teams were as follows:

Bulgaria	227	Romania	143
China	211	Turkey	133
USA	188	Japan	131
Vietnam	172	Hungary	128
Russia	167	United Kingdom	128
Korea	157	Canada	119
		Kazakhastan	119

The 2003 USAMO was prepared by Titu Andreescu (Chair), Zuming Feng, Kiran Kedlaya, and Richard Stong. The Team Selection Test was prepared by Titu Andreescu and Zuming Feng. The MOSP was held at
the University of Nebraska-Lincoln. Zuming Feng (Academic Director), Gregory Galperin, and Melanie Wood served as instructors, assisted by Po-Shen Loh and Reid Barton as junior instructors, and Ian Le and Ricky Liu as graders. Kiran Kedlaya served as guest instructor.

For more information about the USAMO or the MOSP, contact Steven Dunbar at sdunbar@math.unl.edu.

22002 Olympiad Results

Daniel Kane, Ricky Liu, Tiankai Liu, Po-Ru Loh, and Inna Zakharevich, all with perfect scores, tied for first on the USAMO. They shared college scholarships of $\$ 30000$ provided by the Akamai Foundation. The Clay Mathematics Institute (CMI) award, for a solution of outstanding elegance, and carrying a $\$ 1000$ cash prize, was presented to Michael Hamburg, for the second year in a row, for his solution to USAMO Problem 6.

The top twelve students on the 2002 USAMO were (in alphabetical order):

Steve Byrnes	Roxbury Latin School	West Roxbury, MA
Michael Hamburg	Saint Joseph High School	South Bend, IN
Neil Herriot	Palo Alto High School	Palo Alto, CA
Daniel Kane	West High School	Madison, WI
Anders Kaseorg	Charlotte Home Educators Association	Charlotte, NC
Ricky Liu	Newton South High School	Newton, MA Tiankai Liu
Phillips Exeter Academy	Exeter, NH	
Po-Ling Loh	James Madison Memorial High School	Madison, WI
Alison Miller	Home Educators Enrichment Group	Niskayuna, NY
Gregory Price	Thomas Jefferson High School of Science and Technology	Alexandria, VA
Tong-ke Xue	Hamilton High School	Chandler, AZ
Inna Zakharevich	Henry M. Gunn High School	Palo Alto, CA

The USA team members were chosen according to their combined performance on the 31st annual USAMO and the Team Selection Test that took place at the Mathematics Olympiad Summer Program (MOSP) held at the University of Nebraska-Lincoln, June 18-July 13, 2002. Members of the USA team at the 2002 IMO (Glasgow, United Kingdom) were Daniel

Kane, Anders Kaseorg, Ricky Liu, Tiankai Liu, Po-Ru Loh, and Tong-ke Xue. Titu Andreescu (Director of the American Mathematics Competitions) and Zuming Feng (Phillips Exeter Academy) served as team leader and deputy leader, respectively. The team was also accompanied by Reid Barton (Massachusetts Institute of Technology) and Steven Dunbar (University of Nebraska-Lincoln) as the observers of the team leader, and Zvezdelina Stankova (Mills College) as the observer of the deputy leader.

At the 2002 IMO, gold medals were awarded to students scoring between 29 and 42 points (there were three perfect papers on this very difficult exam), silver medals to students scoring between 23 and 28 points, and bronze medals to students scoring between 14 and 22 points. Loh's 36 tied for fourth place overall. The team's individual performances were as follows:

Kane	GOLD Medallist	T. Liu	GOLD Medallist
Kaseorg	SILVER Medallist	Loh	GOLD Medallist
R. Liu	GOLD Medallist	Xue	Honorable Mention

In terms of total score (out of a maximum of 252), the highest ranking of the 84 participating teams were as follows:

China	212	Taiwan	161
Russia	204	Romania	157
USA	171	India	156
Bulgaria	167	Germany	144
Vietnam	166	Iran	143
Korea	163	Canada	142

The 2002 USAMO was prepared by Titu Andreescu (Chair), Zuming Feng, Gregory Galperin, Alexander Soifer, Richard Stong and Zvezdelina Stankova. The Team Selection Test was prepared by Titu Andreescu and Zuming Feng. The MOSP was held at the University of Nebraska-Lincoln. Because of a generous grant from the Akamai Foundation, the 2002 MOSP expanded from the usual 24-30 students to 176. An adequate number of instructors and assistants were appointed. Titu Andreescu (Director), Zuming Feng, Dorin Andrica, Bogdan Enescu, Chengde Feng, Gregory Galperin, Razvan Gelca, Alex Saltman, Zvezdelina Stankova, Walter Stromquist, Zoran Sunik, Ellen Veomett, and Stephen Wang served as instructors, assisted by Reid Barton, Gabriel Carroll, Luke Gustafson, Andrei Jorza, Ian Le, Po-Shen Loh, Mihai Manea, Shuang You, and Zhongtao Wu.

3 2001 Olympiad Results

The top twelve students on the 2001 USAMO were (in alphabetical order):

Reid W. Barton	Arlington, MA
Gabriel D. Carroll	Oakland, CA
Luke Gustafson	Breckenridge, MN
Stephen Guo	Cupertino, CA
Daniel Kane	Madison, WI
Ian Le	Princeton Junction, NJ
Ricky I. Liu	Newton, MA
Tiankai Liu	Saratoga, CA
Po-Ru Loh	Madison, WI
Dong (David) Shin	West Orange, NJ
Oaz Nir	Saratoga, CA
Gregory Price	Falls Church, VA

Reid Barton was the winner of the Samuel Greitzer-Murray Klamkin award, given to the top scorer on the USAMO. Reid Barton, Gabriel D. Carroll, Tiankai Liu placed first, second, and third, respectively, on the USAMO. They were awarded college scholarships of $\$ 15000, \$ 10000$, $\$ 5000$, respectively, by the Akamai Foundation. The Clay Mathematics Institute (CMI) award, for a solution of outstanding elegance, and carrying a $\$ 1000$ cash prize, was presented to Michael Hamburg for his solution to USAMO Problem 6.

The USA team members were chosen according to their combined performance on the 30th annual USAMO and the Team Selection Test that took place at the MOSP held at the Georgetown University, June 5-July 3, 2001. Members of the USA team at the 2001 IMO (Washington, D.C., United States of America) were Reid Barton, Gabriel D. Carroll, Ian Le, Tiankai Liu, Oaz Nir, and David Shin. Titu Andreescu (Director of the American Mathematics Competitions) and Zuming Feng (Phillips Exeter Academy) served as team leader and deputy leader, respectively. The team was also accompanied by Zvezdelina Stankova (Mills College), as the observer of the team deputy leader.

At the 2001 IMO, gold medals were awarded to students scoring between 30 and 42 points (there were 4 perfect papers on this very difficult exam), silver medals to students scoring between 19 and 29 points, and bronze medals to students scoring between 11 and 18 points. Barton and Carroll both scored perfect papers. The team's individual performances were as follows:

Barton	Homeschooled	GOLD Medallist
Carroll	Oakland Technical HS	GOLD Medallist
Le	West Windsor-Plainsboro HS	GOLD Medallist
Liu	Phillips Exeter Academy	GOLD Medallist
Nir	Monta Vista HS	SILVER Medallist
Shin	West Orange HS	SILVER Medallist

In terms of total score (out of a maximum of 252), the highest ranking of the 83 participating teams were as follows:

China	225	India	148
USA	196	Ukraine	143
Russia	196	Taiwan	141
Bulgaria	185	Vietnam	139
Korea	185	Turkey	136
Kazakhstan	168	Belarus	135

The 2001 USAMO was prepared by Titu Andreescu (Chair), Zuming Feng, Gregory Galperin, Alexander Soifer, Richard Stong and Zvezdelina Stankova. The Team Selection Test was prepared by Titu Andreescu and Zuming Feng. The MOSP was held at Georgetown University, Washington, D.C. Titu Andreescu (Director), Zuming Feng, Alex Saltman, and Zvezdelina Stankova served as instructors, assisted by George Lee, Melanie Wood, and Daniel Stronger.

42000 Olympiad Results

The top twelve students on the 2000 USAMO were (in alphabetical order):

David G. Arthur	Toronto, ON
Reid W. Barton	Arlington, MA
Gabriel D. Carroll	Oakland, CA
Kamaldeep S. Gandhi	New York, NY
Ian Le	Princeton Junction, NJ
George Lee, Jr.	San Mateo, CA
Ricky I. Liu	Newton, MA
Po-Ru Loh	Madison, WI
Po-Shen Loh	Madison, WI
Oaz Nir	Saratoga, CA
Paul A. Valiant	Belmont, MA
Yian Zhang	Madison, WI

Reid Barton and Ricky Liu were the winners of the Samuel GreitzerMurray Klamkin award, given to the top scorer(s) on the USAMO. The Clay Mathematics Institute (CMI) award was presented to Ricky Liu for his solution to USAMO Problem 3.

The USA team members were chosen according to their combined performance on the 29th annual USAMO and the Team Selection Test that took place at the MOSP held at the University of Nebraska-Lincoln, June 6-July 4, 2000. Members of the USA team at the 2000 IMO (Taejon, Republic of Korea) were Reid Barton, George Lee, Ricky Liu, Po-Ru Loh, Oaz Nir, and Paul Valiant. Titu Andreescu (Director of the American Mathematics Competitions) and Zuming Feng (Phillips Exeter Academy) served as team leader and deputy leader, respectively. The team was also accompanied by Dick Gibbs (Chair, Committee on the American Mathematics Competitions, Fort Lewis College), as the official observer of the team leader.

At the 2000 IMO, gold medals were awarded to students scoring between 30 and 42 points (there were four perfect papers on this very difficult exam), silver medals to students scoring between 20 and 29 points, and bronze medals to students scoring between 11 and 19 points. Barton's 39 tied for 5th. The team's individual performances were as follows:

Barton	Homeschooled	GOLD Medallist
Lee	Aragon HS	GOLD Medallist
Liu	Newton South HS	SILVER Medallist
P.-R. Loh	James Madison Memorial HS	SILVER Medallist
Nir	Monta Vista HS	GOLD Medallist
Valiant	Milton Academy	SILVER Medallist

In terms of total score (out of a maximum of 252), the highest ranking of the 82 participating teams were as follows:

China	218	Belarus	165
Russia	215	Taiwan	164
USA	184	Hungary	156
Korea	172	Iran	155
Bulgaria	169	Israel	139
Vietnam	169	Romania	139

The 2000 USAMO was prepared by Titu Andreescu (Chair), Zuming Feng, Kiran Kedlaya, Alexander Soifer, Richard Stong and Zvez-delina Stankova. The Team Selection Test was prepared by Titu Andreescu and Kiran Kedlaya. The MOSP was held at the University of Nebraska-Lincoln.

Titu Andreescu (Director), Zuming Feng, Razvan Gelca, Kiran Kedlaya, Alex Saltman, and Zvezdelina Stankova served as instructors, assisted by Melanie Wood and Daniel Stronger.

51999 Olympiad Results

The top eight students on the 1999 USAMO were (in alphabetical order):

Reid W. Barton	Arlington, MA
Gabriel D. Carroll	Oakland, CA
Lawrence O. Detlor	New York, NY
Stephen E. Haas	Sunnyvale, CA
Po-Shen Loh	Madison, WI
Alexander B. Schwartz	Bryn Mawr, PA
Paul A. Valiant	Belmont, MA
Melanie E. Wood	Indianapolis, IN

Alexander (Sasha) Schwartz was the winner of the Samuel GreitzerMurray Klamkin award, given to the top scorer on the USAMO. Newly introduced was the Clay Mathematics Institute (CMI) award, to be presented (at the discretion of the USAMO graders) for a solution of outstanding elegance, and carrying a $\$ 1000$ cash prize. The CMI award was presented to Po-Ru Loh (Madison, WI; brother of Po-Shen Loh) for his solution to USAMO Problem 2.

Members of the USA team at the 1999 IMO (Bucharest, Romania) were Reid Barton, Gabriel Carroll, Lawrence Detlor, Po-Shen Loh, Paul Valiant, and Melanie Wood. Titu Andreescu (Director of the American Mathematics Competitions) and Kiran Kedlaya (Massachusetts Institute of Technology) served as team leader and deputy leader, respectively. The team was also accompanied by Walter Mientka (University of Nebraska, Lincoln), who served as secretary to the IMO Advisory Board and as the official observer of the team leader.

At the 1999 IMO, gold medals were awarded to students scoring between 28 and 39 points, silver medals to students scoring between 19 and 27 points, and bronze medals to students scoring between 12 and 18 points. Barton's 34 tied for 13th. The team's individual performances were as follows:

Barton	GOLD Medallist
Carroll	SILVER Medallist
Detlor	BRONZE Medallist

P.-S. Loh SILVER Medallist
Valiant GOLD Medallist
Wood SILVER Medallist

In terms of total score, the highest ranking of the 81 participating teams were as follows:

China	182	Korea	164
Russia	182	Iran	159
Vietnam	177	Taiwan	153
Romania	173	USA	150
Bulgaria	170	Hungary	147
Belarus	167	Ukraine	136

The 1999 USAMO was prepared by Titu Andreescu (Chair), Zuming Feng, Kiran Kedlaya, Alexander Soifer and Zvezdelina Stankova. The MOSP was held at the University of Nebraska-Lincoln. Titu Andreescu (Director), Zuming Feng, Kiran Kedlaya, and Zvezdelina Stankova served as instructors, assisted by Andrei Gnepp and Daniel Stronger.

6 I999-2003 Cumulative IMO Results

In terms of total scores (out of a maximum of 1260 points for the last five years), the highest ranking of the participating IMO teams is as follows:

China	1048	Hungary	676
Russia	964	India	658
Bulgaria	918	Japan	658
USA	889	Ukraine	656
Korea	841	Turkey	624
Vietnam	823	Germany	603
Romania	741	Kazakhstan	583
Taiwan	733	Israel	563
Belarus	713	Canada	547
Iran	680	Australia	544

More and more countries now value the crucial role of meaningful problem solving in mathematics education. The competition is getting tougher and tougher. A top ten finish is no longer a given for the traditional powerhouses.

About the Authors

Titu Andreescu received his BA, MS, and PhD from the West University of Timisoara, Romania. The topic of his doctoral dissertation was "Researches on Diophantine Analysis and Applications." Titu teaches at the University of Wisconsin-Whitewater and is chairman of the USA Mathematical Olympiad. He served as director of the MAA American Mathematics Competitions (1998-2003), coach of the USA International Mathematical Olympiad Team (IMO) for 10 years (1993-2002), director of the Mathematical Olympiad Summer Program (1995-2002) and leader of the USA IMO Team (1995-2002). In 2002 Titu was elected member of the IMO Advisory Board, the governing body of the international competition. Titu received the Edyth May Sliffe Award for Distinguished High School Mathematics Teaching from the MAA in 1994 and a "Certificate of Appreciation for his outstanding service as coach of the Mathematical Olympiad Summer Program in preparing the US team for its perfect performance in Hong Kong at the 1994 International Mathematical Olympiad" from the president of the MAA, in 1995.

Zuming Feng graduated with a PhD degree from Johns Hopkins University with emphasis on Algebraic Number Theory and Elliptic Curves. He teaches at Phillips Exeter Academy. He also serves as a coach (19972003)/deputy leader (2000-2002)/leader (2003) of the USA International Mathematical Olympiad (IMO) Team. Zuming is a member of the USA Mathematical Olympiad Committee (1999-2003). He was an assistant director (1999-2002) and later the academic director (2003) of the USA Mathematical Olympiad Summer Program (MOSP). Zuming received the Edyth May Sliffe Award for Distinguished High School Mathematics Teaching from the MAA in 1996 and 2002.

